
Weakest Precondition for General Recursive

Programs Formalized in Coq ?

Xingyuan Zhang1, Malcolm Munro1, Mark Harman2, and Lin Hu2

1 Department of Computer Science, University of Durham, Science Laboratories,
South Road, Durhram, DH1 3LE, U.K.

{Xingyuan.Zhang, Malcolm.Munro}@durham.ac.uk
2 Department of Information Systems and Computing, Brunel University, Uxbridge,

Middlesex, UB8 3PH, U.K.
{Mark.Harman, Lin.Hu}@brunel.ac.uk

Abstract. This paper describes a formalization of the weakest precondi-
tion, wp, for general recursive programs using the type-theoretical proof
assistant Coq. The formalization is a deep embedding using the computa-
tional power intrinsic to type theory. Since Coq accepts only structural
recursive functions, the computational embedding of general recursive
programs is non-trivial. To justify the embedding, an operational se-
mantics is defined and the equivalence between wp and the operational
semantics is proved. Three major healthiness conditions, namely: Strict-
ness, Monotonicity and Conjunctivity are proved as well.
Keywords: Weakest Precondition, Operational Semantics, Formal Ver-
ification, Coq

1 Introduction

The weakest precondition, wp, proposed by E. W. Dijkstra [5] proved to be useful
in various areas of software development and has been investigated extensively
[1, 13, 12]. There have been a number of attempts to support wp and refinement
calculus with computer assisted reasoning systems such as HOL [16, 19, 9], Is-
abelle [14, 17, 18], Ergo [3], PVS [8] and Alf [10]. Unfortunately, among these
works, only Laibinis and Wright [9] deals with general recursion.

In this paper, an embedding of wp is given for general recursive programs
using the intentional type theory supported by Coq [2]. Since the computational
mechanism peculiar to type theory is used, we name such a style of embedding
‘computational embedding’. The importance of computational embedding is that
it can be seen as a bridge between deep and shallow embedding. Since wp is
defined as a function from statement terms to predicate transformers, before
the definition of wp in wp (c) is expanded, by accessing the syntax structure of
c, we enjoy the benefit of deep embedding, so that meta-level operations such
as program transformations (usually expressed as functions on program terms)

? The work in this paper is sponsored by the EPSRC project GUSTT

2

can be verified. On the other hand, after expanding wp, wp (c) becomes the
semantics of c. With the computational mechanism taking care of the expanding
process, we can focus on the semantics without worrying about syntax details,
a benefit traditionally enjoyed by shallow embedding. Therefore, computational
embedding enables us to switch between deep and shallow embedding with ease.

The language investigated in this paper is general recursive in the sense
that it contains a statement which takes the form of a parameter-less recursive
procedure : proc p ≡ c, the execution of which starts with the execution of
the procedure body c. When a recursive call pcall p is encountered during the
execution, the pcall p is replaced by the procedure body c and the execution
continues from the beginning of c.

A näıve definition of wp (proc p ≡ c) could be:

wp (proc p ≡ c)
def
=⇒

∨

n<ω

wp
(

proc p ≡ c
n
)

(1)

where the expansion operation proc p ≡ c
n

is defined as:

proc p ≡ c
0 def

=⇒ assert(false)

proc p ≡ c
n+1 def

=⇒ c
{

p/ proc p ≡ c
n
} (2)

where in each round of expansion, p in c is substituted by proc p ≡ c
n
.

The problem with this definition is that: in (1), the recursive call of wp:

wp
(

proc p ≡ c
n
)

is not structural recursive, since the argument proc p ≡ c
n

is structurally

larger than the argument proc p ≡ c on the left. Therefore, (1) is rejected by
the function definition mechanism of Coq, which only accepts structural recursive
functions.

This paper proposes a formulation of wp which solves this problem. To justify
such a formulation, an operational semantics is defined and the equivalence of
wp and the operational semantics is proved. Three major healthiness conditions
are proved for wp as well, namely: Strictness, Monotonicity and Conjunctivity.
For brevity, in this paper, only the equivalence proof is discussed in full detail.

The rest of the paper is arranged as follows: Section 2 defines the notions
of predicate, predicate transformer, transformer of predicate transformers to-
gether with various partial orders and monotonicity predicates. Section 3 gives
the definition wp. Section 4 presents the operational semantics. Section 5 relates
operational semantics to wp. Section 6 relates wp to operational semantics. Sec-
tion 7 concludes the whole paper. Additional technical detail can be found in
Appendices. The technical development of this paper has been fully formalized
and checked by Coq. The Coq scripts are available from

http : //www.dur.ac.uk/xingyuan.zhang/tphol

3

Conventions. Because type theory [4, 15, 11] was first proposed to formalize
constructive mathematics, we are able to present the work in standard mathe-
matical notation. For brevity, we use the name of a variable to suggest its type.
For example, s, s′, s, . . . in this paper always represent program stores.

Type theory has a notion of computation, which is used as a definition mech-

anism, where the equation a
def
=⇒ b represents a ‘computational rule’ used to

expand the definition of a to b.
Free variables in formulæ are assumed to be universally quantified, for ex-

ample, n1 + n2 = n2 + n1 is an abbreviation of ∀n1, n2. n1 + n2 = n2 + n1.
For A : Set, the exceptional set M(A) is defined as:

A : Set

M(A) : Set
M formation

A : Set

⊥ : M(A)
bottom value

A : Set a : A

unit (a) : M(A)
normal value

(3)

Intuitively, M(A) represents the type obtained from A by adding a special
element ⊥ to represent undefined value. A normal element a of the original type
A is represented as unit (a) in exceptional set M(A). However, the unit is usually
omitted, unless there is possibility of confusion.

2 Predicates and predicate transformers

We take the view that the predicates transformed by wp are predicates on pro-
gram stores. Therefore, the type of predicates PD is defined as:

PD
def
=⇒ PS → Prop (4)

where Prop is the type of propositions, PS is the type of program stores. For
simplicity, this paper is abstract about program stores and denotable values.
However, there is a comprehensive treatment of program stores, denotable values
and expression evaluation in the Coq scripts.

The type of predicate transformers PT is defined as:

PT
def
=⇒ PD → PD (5)

The type of transformers of predicate transformers PT T is defined as:

PT T
def
=⇒ PT → PT (6)

The partial order 4P between predicates is defined as:

P1 4P P2
def
=⇒ ∀ s . P1 (s) ⇒ P2 (s) (7)

The partial order 4pt between predicate transformers is defined as:

pt1 4pt pt2
def
=⇒ ∀P . pt1 (P) 4P pt2 (P) (8)

4

The monotonicity predicate on PT is defined as:

mono(pt)
def
=⇒ ∀P1, P2. P1 4P P2 ⇒ pt (P1) 4P pt (P2) (9)

The partial order on 4σ between environments is defined as:

σ1 4σ σ2
def
=⇒ ∀ p . σ1 (p) 4pt σ2 (p) (10)

The partial order 4ptt between transformers of predicate transformers is defined
as:

ptt1 4ptt ptt2
def
=⇒ ∀ pt . mono(pt) ⇒ ptt1 (pt) 4pt ptt2 (pt) (11)

The corresponding derived equivalence relations are defined as:

P1 ≈P P2
def
=⇒ P1 4P P2 ∧ P2 4P P1

pt1 ≈pt pt2
def
=⇒ pt1 4pt pt2 ∧ pt2 4pt pt1

ptt1 ≈ptt ptt2
def
=⇒ ptt1 4ptt ptt2 ∧ ptt2 4ptt ptt1

(12)

The monotonicity predicate on environments is defined as:

mono(σ)
def
=⇒ ∀ p . mono(σ (p)) (13)

3 Formalization of wp

In order to overcome the problem mentioned in the Introduction, a notion of
environment is introduced, which is represented by the type Σ:

Σ
def
=⇒ ID → PT (14)

which is a function from identifiers to predicate transformers. In this paper,
procedure names are represented as identifiers.

The empty environment ε : Σ, which maps all procedure names to the false
predicate transformer λP.F, is defined as:

ε
def
=⇒ λ p. λP.F (15)

where p is procedure name, P is predicate and F is the false predicate, which is
defined as:

F
def
=⇒ λ s.False (16)

where s is program store, False is the false proposition in Coq. Therefore, F does
not hold on any program store.

The operation σ [p 7→ pt] is defined, to add the mapping p 7→ pt to environ-
ment σ:

σ [p 7→ pt] (p)
def
=⇒ pt if p = p

σ [p 7→ pt] (p)
def
=⇒ σ (p) if p 6= p

(17)

5

C : Set
C fmt

i : ID e : E

i := e : C
s asgn

e : E

assert(e) : C
s assert

c1 : C c2 : C

c1; c2 : C
s seq

e : E c1 : C c2 : C

if e then c1 else c2 : C
s ifs

p : ID c : C

proc p ≡ c : C
s proc

p : ID

pcall p : C
s pcall

Fig. 1. The Definition of C

wpc (σ, i := e)
def
=⇒ λ P, s. ∃ v . [[e]]s = v ∧ P

(

s
[

v i
])

(18a)

wpc (σ, assert(e))
def
=⇒ λ P, s. [[e]]s = true ∧ P (s) (18b)

wpc (σ, c1; c2)
def
=⇒ λ P, s. wpc (σ, c1) (wpc (σ, c2) (P)) (s) (18c)

wpc (σ, if e then c1 else c2)
def
=⇒ λ P, s .([[e]]s = true ∧ wpc (σ, c1) (P) (s))∨

([[e]]s = false ∧ wpc (σ, c2) (P) (s)) (18d)

wpc (σ, proc p ≡ c)
def
=⇒ λ P, s. ∃n . λ pt. wpc

(

σ
[

p 7→ pt
]

, c
)

n

(P) (s) (18e)

wpc (σ, pcall p)
def
=⇒ λ P, s. σ (p) (P) (s) (18f)

Fig. 2. The Definition of wpc

Instead of defining wp directly, an operation wpc (σ, c) is defined to compute
a predicate transformer for command c under the environment σ. By using the
environment σ, wpc (σ, c) can be defined using structural recursion. With wpc,

the normal wp is now defined as: wp (c)
def
=⇒ wpc (ε, c).

The syntax of the programming language formalized in this paper is given
in Figure 1 as the inductive type C. The type of expressions is formalized as
an abstract type E . The evaluation of expressions is formalized as the operation
[[e]]s, where the expression [[e]]s = v means that expression e evaluate to value v
under program store s and the expression [[e]]s = ⊥ means there is no valuation of
expression e under program store s. The definition of wpc (σ, c) is given in Figure
2, where each command corresponds to an equation. The right-hand-side of each
equation is a lambda abstraction λP, s. (. . .), where P is the predicate required
to hold after execution of the corresponding command, and s is the program
store before execution. The operation s

[

v i
]

is the program store obtained from
program store s by setting the value of variable i to v.

Equations (18a) – (18d) are quite standard. Only (18e) and (18f) need more
explanation. Equation (18e) is for wpc (σ, proc p ≡ c), the originally problem-
atic case. The recursive call on the right-hand-side is wpc

(

σ
[

p 7→ pt
]

, c
)

, which
is structural recursive with respect to the second argument. The key idea is that:
a mapping p 7→ pt is added to the environment σ, which maps p to the formal

6

parameter pt. By abstracting on pt, a ‘transformer of predicate transformers’:

λ pt.wpc
(

σ
[

p 7→ pt
]

, c
)

: PT → PT

is obtained. Notice that the term λ pt.wpc
(

σ
[

p 7→ pt
]

, c
)

n

in (18e) is no

longer the expansion operation defined in (2), but a folding operation defined
as:

ptt
0 def

=⇒ λP .F

ptt
n+1 def

=⇒ ptt
(

ptt
n
) (19)

In place of
∨

n<ω wp
(

proc p ≡ c
n
)

, we write

∃n . λ pt.wpc
(

σ
[

p 7→ pt
]

, c
)

n

(P) (s)

which is semantically identical, but expressible in Coq.
The equation (18f) defines wpc for pcall p, which is the predicate transformer

assigned to p by σ.
As a sanity checking, three healthiness conditions, namely: Strictness, Mono-

tonicity and Conjunctivity, are proved. For brevity, only the one, which is used
in this paper, is listed here:

Lemma 1 (Generalized Monotonicity Lemma).

∀c.

(σ1 4σ σ2 ⇒ mono(σ1) ⇒ mono(σ2) ⇒

wpc (σ1, c) 4pt wpc (σ2, c))∧ (20a)

(mono(σ) ⇒ mono(wpc (σ, c))) (20b)

The proof for other healthiness conditions can be found in the Coq scripts.

4 The operational semantics

To strengthen the justification of wp, an operational semantics is defined and
a formal relationship between the operational semantics and wp is established.
The operational semantics is given in Figure 3 as an inductively defined relation
s

c
−→
cs

s′, which means that: the execution of command c transforms program

store from s to s′. The cs is the ‘call stack’ under which c is executed. The type
of call stack CS is defined as:

CS : Set
CS form

ϑ : CS
nil cs

p : ID c : C cs, cs : CS

cs[p (c, cs)] : CS
cons cs

(21)
where ϑ is the empty call stack, and cs[p (c, cs)] is the call stack obtained

from cs by pushing (p, c, cs).

7

In the rule e proc, when a recursive procedure proc p ≡ c is executed, the
operation cs[p (c, cs)] pushes procedure body c together with the call stack
cs, under which the c is going to be executed onto the call stack, and then the
procedure body c is executed.

In the rule e pcall, when a recursive call pcall p is executed, the operation
lookup(cs, p) is used to look up the procedure body being called and the call
stack under which it is going to be executed. Suppose (c, cs) is found, then c is
executed under the call stack cs.

The definition of lookup is:

lookup(cs[p (c, cs)], p)
def
=⇒ (c, cs) if p = p

lookup(cs[p (c, cs)], p)
def
=⇒ lookup(cs, p) if p 6= p

lookup(ϑ, p)
def
=⇒ ⊥

(22)

[[e]]s = true

s
assert(e)
−−−−−→

cs
s

e asrt
[[e]]s = v

s
i:=e
−−−→

cs
s
[

v i
]

e asgn

[[e]]s = true s
c1−→
cs

s′

s
if e then c1 else c2−−−−−−−−−−−→

cs
s′

e ifs t
[[e]]s = false s

c2−→
cs

s′

s
if e then c1 else c2−−−−−−−−−−−→

cs
s′

e ifs f

s
c1−→
cs

s′ s′
c2−→
cs

s′′

s
c1; c2−−−−→

cs
s′′

e seq

s
c

−−−−−−−−→
cs[p (c,cs)]

s′

s
proc p ≡ c
−−−−−−→

cs
s′

e proc

lookup(cs, p) = (c, cs) s
c

−−−−−−−−→
cs[p (c,cs)]

s′

s
pcall p
−−−−→

cs
s′

e pcall

Fig. 3. Definition of the operational semantics

5 Relating operational semantics to wp

The operational semantics can be related to wp by the following lemma:

Lemma 2 (operational semantics to wp).

s
c
−→
ϑ

s′ ⇒ P (s′) ⇒ wp (c) (P) (s)

which says: if the execution of c under the empty call stack yields program store
s′, then for any predicate P , if P holds on s′, then the predicate wp (c) (P) (the
predicate P transformed by wp (c)) holds on the initial program store s.

8

Instead of proving Lemma 2 directly, the following generalized lemma is
proved first, and Lemma 2 is treated as a corollary of Lemma 3.

Lemma 3 (‘operational semantics to wp’ generalized).

s
c
−→
cs

s′ ⇒ (23a)

can(cs) ⇒ (23b)

∃n .

(∀P . P (s′) ⇒ wpc ({|cs|}n, c) (P) (s)) (23c)

where the predicate can is used to constrain the form of cs, so that it can be
guaranteed that the execution s

c
−→
cs

s′ is a sub-execution of some top level exe-

cution s
c
−→
ϑ

s′. Therefore, can is formalized as the following inductively defined

predicate:

can(ϑ)
can nil

can(cs)

can(cs[p (c, cs)])
can cons (24)

The operation {|cs|}n is used to transform a call stack to environment. It is
defined as:

{|ϑ|}n def
=⇒ ε

{|cs[p (c, cs)]|}n def
=⇒

{|cs|}n
[

p 7→ λ pt.wpc
(

{|cs|}n
[

p 7→ pt
]

, c
)

n]

(25)

The idea behind can and {|cs|}n is explained in detail in Section 5.1. The proof
of Lemma 3 is given in Appendix A. The preliminary lemmas used in the proof
are given in Appendix C.1.

Since can(ϑ) is trivially true, by instantiating cs to ϑ, Lemma 2 follows di-
rectly from Lemma 3.

5.1 Informal explanation of Lemma 3

In (18e), the n is determined by the number of recursive calls to p during the exe-
cution of c. n can be any natural number larger than this number. By expanding
wpc in wpc (σ, proc p ≡ c) (P) (s), we have:

∃ n . λ pt.wpc
(

σ
[

p 7→ pt
]

, c
)

n

(P) (s)

If n = n + 1, then by expanding the definition of · · ·
n+1

, we have:

wpc

(

σ

[

p 7→ λ pt.wpc
(

σ
[

p 7→ pt
]

, c
)

n
]

, c

)

(P) (s) (26)

9

The natural number n is the number of recursive calls of p during the execution
of c starting from program store s.

An analysis of the operational semantics in Figure 3 may reveal that: if the

execution s
c
−→
cs

s′ is a sub-execution of some ‘top level execution’ s
c
−→
ϑ

s′, then

cs must be of the form:

ϑ[p0 (c0, cs0)][p1 (c1, cs1)] . . . [pm (cm, csm)] (27)

where the [pi (ci, csi)] (i ∈ {0, . . . ,m}) are pushed onto cs through the
execution of proc pi ≡ ci (i ∈ {0, . . . ,m}). During the execution of c, there
must be a number of recursive calls on each of the procedures pi (i ∈ {0, . . . ,m}).
Let these numbers be np0

, np1
, . . . , npm

.

In the design of {|cs|}n, inspired by the analysis in (26), we first intended to
transform cs into:

ε [p0 7→ fd({|cs0|}, np0
, p0, c0)] [p1 7→ fd({|cs1|}, np1

, p1, c1)] . . .

[pm 7→ fd({|csm|}, npm
, pm, cm)] (28)

where fd(σ, n, p, c) is the abbreviation defined as:

fd(σ, n, p, c)
def
=⇒ λ pt.wpc

(

σ
[

p 7→ pt
]

, c
)

n

(29)

However, it is quite inconvenient to find the values for all the natural numbers
np0

, np1
, . . . , npm

. Fortunately, since fd(σ, n, p, c) is monotonous with respect to
n, it is sufficient to deal only with the upper bound of them. It is usually easier
to deal with one natural number than a group of natural numbers. Therefore,
the cs is finally transformed into:

ε [p0 7→ fd({|cs0|}
nmax , nmax, p0, c0)] [p1 7→ fd({|cs1|}

nmax , nmax, p1, c1)] . . .

[pm 7→ fd({|csm|}nmax , nmax, pm, cm)] (30)

where nmax is a natural number larger than any npi
(i ∈ {0, . . . ,m}). The n

in Lemma 3 is actually the nmax in (30). The equation (30) also explains the
definition of {|cs|}n in (25).

6 Relating wp to operational semantics

wp can be related to the operational semantics by the following lemma:

Lemma 4 (wp to operational semantics).

wp (c) (P) (s) ⇒ ∃ s′ .

(

s
c
−→
ϑ

s′ ∧ P (s′)

)

10

which says: for any predicate P , if the transformation of any predicate P by
wp (c) holds on s, then the execution of c under the empty call stack terminates
and transforms program store from s to s′, and P holds on s′.

Instead of proving Lemma 4 directly, the following generalized lemma is
proved first and Lemma 4 follows as a corollary of Lemma 5.

Lemma 5 (‘wp to operational semantics’ generalized).

wpc (envof(ecs), c) (P) (s) ⇒ (31a)

ecan(ecs) ⇒ (31b)

∃ s′ .

(s
c

−−−−−→
csof(ecs)

s′ ∧ (31c)

P (s′)) (31d)

where, ecs is an ‘extended call stack’, the type of which – ECS is defined as:

ECS : Type
ECS form

θ : ECS
nil ecs

p : ID c : C ecs : ECS pt : PT ecs : ECS

ecs[p ↪→ (c, ecs, pt)] : ECS
cons ecs

(32)

where θ is the ‘empty extended call stack’ and ecs[p ↪→ (c, ecs, pt)] is the ex-
tended call stack obtained by adding (p, c, ecs, pt) to the head of ecs. It is obvious
from the definition of ECS that an extended call stack is a combination of call
stack and environment, with each procedure name p being mapped to a triple
(c, ecs, pt). Therefore, by forgetting pt in the triple, a normal call stack is ob-
tained. This is implemented by the operation csof(ecs):

csof(θ)
def
=⇒ ϑ

csof(ecs[p ↪→ (c, ecs, pt)])
def
=⇒ csof(ecs)[p (c, csof(ecs))]

(33)

By forgetting c, ecs in the triple, a normal environment is obtained. This is
implemented by the operation envof(ecs):

envof(θ)
def
=⇒ ε

envof(ecs[p ↪→ (c, ecs, pt)])
def
=⇒ envof(ecs) [p 7→ pt]

(34)

The operation lookup ecs(p, ecs) is defined to lookup (in ecs) the triple (c, ecs, pt)
mapped to p:

lookup ecs(p, ecs[p ↪→ (c, ecs, pt)])
def
=⇒ (p, c, ecs, pt) if p = p

lookup ecs(p, ecs[p ↪→ (c, ecs, pt)])
def
=⇒ lookup ecs(p, ecs) if p 6= p

lookup ecs(p, θ)
def
=⇒ ⊥

(35)

11

The notation ⊥ is overloaded here, it is an undefined value in exceptional type,
instead of exceptional set.

The predicate ecan(ecs) is defined to constrain the form of ecs, so that in
each triple (c, ecs, pt), pt can be related to the (c, ecs) in the following sense:

ecan(ecs)
def
=⇒ lookup ecs(p, ecs) = (c, ecs, pt) ⇒

pt (P) (s) ⇒ ∃ s′ .

(

s
proc p ≡ c
−−−−−−−→

csof(ecs)
s′ ∧ P (s′)

)

(36)

Since lookup ecs(p, θ) = ⊥, it clear that ecan(θ) holds. Therefore, by instan-
tiating ecs to θ, Lemma 4 can be proved as a corollary of Lemma 5.

The proof of Lemma 5 is given in Appendix B. The preliminary lemmas used
in the proof are given in Appendix C.2.

7 Conclusion

We have given a computational embedding of wp in Coq. The definition is verified
by relating it to an operational semantics. Since such a style of embedding has
the benefits of both deep and shallow embedding, it can be used to verify both
program transformations and concrete programs.

Laibinis and Wright [9] treats general recursion in HOL. But that is a shallow
embedding and there is no relation between wp and operational semantics.

There have been some efforts to verification imperative programs using type
theory. Fillitre [6] implemented an extension of Coq to generate proof obligations
from annotated imperative programs. The proof of these proof obligations in
Coq will guarantee the correctness of the annotated imperative programs. Since
it uses shallow embedding, meta programming (such as program transformation)
can not be verified in Fillitre’s setting.

Kleymann [7] derived Hoare logic directly from operational semantics. Since
Kleymann’s treatment is a deep embedding, program transformations can be
verified. However, because the operational semantics is formalized as an induc-
tive relation (rather than using computation), verifying concrete programs in
Kleymann’s setting is not very convenient. This paper can be seen as an effort
to overcome this problem through a computational treatment of wp. In our set-
ting, computation mechanism can be used to simplify proof obligations when
verifying concrete programs. Hoare triple can be defined as:

{P1} c {P2}
def
=⇒ P1 (s) ⇒ wp (c) (P2) (s) (37)

From this, Hoare logic rules for structure statements can be derived. For example,
the rule for if e then c1 else c2 is:

Lemma 6 (The proof rule for if e then c1 else c2).

{λ s. ([[e]]s = true ∧ P1 (s))} c1 {P2} ⇒

{λ s. ([[e]]s = false ∧ P1 (s))} c2 {P2} ⇒

{P1} if e then c1 else c2 {P2}

12

Hoare logic rules can be used to propagate proof obligations from parent state-
ments to its sub-statements. When the propagation process reaches atomic state-
ments (such as i := e), by expanding the definition of wp, the proof obligation
can be simplified by the computation mechanism. Since users have access to
the definition of wp all the time, they can choose whatever convenient for their
purpose, either Hoare logic rules (such as Lemma 6) or the direct definition of
wp.

We have gone as far as the verification of insertion sorting program. Admit-
tedly, verification of concrete program in our setting is slightly complex than
in Fillitre’s. However, the ability to verify both program transformations and
concrete programs makes our approach unique. The treatment of program veri-
fication in our setting will be detailed in a separate paper.

Acknowledgement. I must first thank Prof. Zhaohui Luo for a lot of technical
directions into type theory. Dr. James McKinna provided many good comments
on an earlier version of this paper. The anonymous referees are thanked for the
helpful suggestions of improvement.

A Proof of Lemma 3

The proof is by induction on the structure of the s
c
−→
cs

s′ in (23a). Some pre-

liminary lemmas used in the proof are listed in Appendix C.1. There is one
case corresponding to each execution rule. For brevity, only two of the more
interesting cases are discussed here:

1. When the execution is constructed using e proc, we have c = (proc p ≡ c)

and s
c

−−−−−−−−→
cs[p (c,cs)]

s′. From the induction hypothesis for this execution and

(23b), it can be derived that:

∃n .∀P . P (s′) ⇒ wpc
(

{|cs[p (c, cs)]|}n, c
)

(P) (s) (38)

By assigning n to n and expanding the definition of wpc, the goal (23c)
becomes:

∀P . P (s′) ⇒ ∃n . λ pt.wpc
(

{|cs|}n
[

p 7→ pt
]

, c
)

n

(P) (s) (39)

By assigning n+1 to n and expanding the definition of · · ·
n+1

, it becomes:

∀P . P
(

s′
)

⇒ wpc

(

{|cs|}n

[

p 7→ λ pt. wpc
(

{|cs|}n
[

p 7→ pt
]

, c
)

n
]

, c

)

(P) (s) (40)

which is exactly (38) with the definition of {| · · · |}n expanded.
2. When the execution is constructed using e proc, we have c = (pcall p) and

lookup(cs, p) = (c, cs) (41a)

s
c

−−−−−−−−→
cs[p (c,cs)]

s′ (41b)

13

By applying Lemma 7 to (23b) and (41a), it can be deduced that can(cs),
from which, can(cs[p (c, cs)]) can be deduced. By applying induction
hypothesis for (41b) to this, it can be deduced that:

∃n . ∀P . P
(

s′
)

⇒ wpc

(

{|cs|}n

[

p 7→ λ pt. wpc
(

{|cs|}n
[

p 7→ pt
]

, c
)

n
]

, c

)

(P) (s)

(42)

By assigning n + 1 to n, the goal (23c) is specialized to:

P (s′) ⇒ {|cs|}n+1 (p)
(

P
)

(s) (43)

By applying Lemma 8 to (41a) and expanding the definition of · · ·
n+1

, it
can be deduced that:

{|cs|}n+1 (p) = wpc

(

{|cs|}n+1

[

p 7→ λ pt. wpc
(

{|cs|}n+1
[

p 7→ pt
]

, c
)

n
]

, c

)

(44)

After rewritten using (44), the goal (43) becomes:

P
(

s′
)

⇒ wpc

(

{|cs|}n+1

[

p 7→ λ pt. wpc
(

{|cs|}n+1
[

p 7→ pt
]

, c
)

n
]

, c

)

(

P
)

(s) (45)

By applying (42) to the P (s′) in (45), we have:

wpc

(

{|cs|}n

[

p 7→ λ pt.wpc
(

{|cs|}n
[

p 7→ pt
]

, c
)

n
]

, c

)

(

P
)

(s) (46)

By applying Lemma 9 to the fact that n ≤ n+1 and (23b), it can be deduced
that {|cs|}n 4σ {|cs|}n+1. By applying Lemma 10 to this, it can be deduced
that:

λ pt. wpc
(

{|cs|}n
[

p 7→ pt
]

, c
)

n

4pt λ pt. wpc
(

{|cs|}n+1
[

p 7→ pt
]

, c
)

n

(47)

By combining {|cs|}n 4σ {|cs|}n+1 and (47), it can be deduced that:

{|cs|}n

[

p 7→ λ pt.wpc
(

{|cs|}n
[

p 7→ pt
]

, c
)

n
]

4σ

{|cs|}n+1

[

p 7→ λ pt.wpc
(

{|cs|}n+1
[

p 7→ pt
]

, c
)

n
]

(48)

By applying (20a) to this, it can be deduced that:

wpc

(

{|cs|}n

[

p 7→ λ pt.wpc
(

{|cs|}n
[

p 7→ pt
]

, c
)

n
]

, c

)

4pt

wpc

(

{|cs|}n+1

[

p 7→ λ pt.wpc
(

{|cs|}n+1
[

p 7→ pt
]

, c
)

n
]

, c

)

(49)

From this and (46), the goal (45) can be proved.

14

B Proof of Lemma 5

The proof is by induction on the structure of c. Some preliminary lemmas used in
the proof are listed in Appendix C.2. There is one case for each type of command.
For brevity, only two of the more interesting cases are discussed here:

1. When c = (proc p ≡ c), after expanding the definition of wpc, the premise
(31a) becomes:

∃n .∀P . λ pt.wpc
(

envof(ecs)
[

p 7→ pt
]

, c
)

n

(P) (s) (50)

A nested induction on n is used to prove the goal, which gives rise to two
cases:
(a) When n = 0, this case can be refuted. Since

λ pt.wpc
(

envof(ecs)
[

p 7→ pt
]

, c
)

n

reduces to λP .F, it can not hold on P and s. And this is in contradiction
with (50).

(b) When n = n+1, after expanding the definition of · · ·
n+1

, (50) becomes:

wpc

(

envof(ecs)

[

p 7→ λ pt. wpc
(

envof(ecs)
[

p 7→ pt
]

, c
)

n
]

, c

)

(P) (s) (51)

which is exactly

wpc

(

envof(ecs[p ↪→ (c, ecs, λ pt. wpc
(

envof(ecs)
[

p 7→ pt
]

, c
)

n

)]), c

)

(P) (s)

(52)

with the definition of envof(· · ·) expanded. From the nested induction
hypothesis for n, it can be proved that:

ecan(ecs[p ↪→ (c, ecs, λ pt.wpc
(

envof(ecs)
[

p 7→ pt
]

, c
)

n

)])

By applying the main induction hypothesis to this and (52), after ex-
panding the definition of csof, it can be deduced that:

∃ s . s
c

−−−−−−−−−−−−−−−−→
csof(ecs)[p (c,csof(ecs))]

s ∧ P (s) (53)

By assigning s to s′, the goal (31d) can be proved directly from the
P (s) in (53). Also the goal (31c) can be proved by applying e proc to

the s
c

−−−−−−−−−−−−−−−−→
csof(ecs)[p (c,csof(ecs))]

s in (53).

2. When c = (pcall p), after expanding the definition of wpc, the premise (31a)
becomes envof(ecs) (p) (P) (s). By applying Lemma 11 to this, we have:

∃ c, ecs . lookup ecs(p, ecs) = (c, ecs, envof(ecs) (p)) (54)

15

After expanding the definition of ecan in (31b), it can be applied to (54) and
the envof(ecs) (p) (P) (s) at the beginning to yield:

∃ s . s
proc p ≡ c
−−−−−−−→

csof(ecs)
s ∧ P (s) (55)

By assigning s to s′, the goal (31d) can be proved directly from the P (s) in

(55). By inversion on the s
proc p ≡ c
−−−−−−−→

csof(ecs)
s in (55), we have: s

c
−−−−−−−−−−−−−−−−→
csof(ecs)[p (c,csof(ecs))]

s. By applying Lemma 12 to (54), we have: lookup(p, csof(ecs)) = (c, csof(ecs)).
Therefore, the goal (31c) can be proved by applying e pcall to these two
results.

C Preliminary lemmas

C.1 Lemmas used in the proof of Lemma 3

Lemma 7. can(cs) ⇒ lookup(p, cs) = (c, cs) ⇒ can(cs)

Lemma 8. lookup(p, cs) = (c, cs) ⇒ {|cs|}n (p) = λ pt.wpc
(

{|cs|}n
[

p 7→ pt
]

, c
)

n

Lemma 9. n1 ≤ n2 ⇒ can(cs) ⇒ {|cs|}n1 4σ {|cs|}n2

Lemma 10.

σ1 4σ σ2 ⇒ mono(σ1) ⇒ mono(σ2) ⇒

λ pt.wpc
(

σ1

[

p 7→ pt
]

, c
)

n

4pt λ pt.wpc
(

σ2

[

p 7→ pt
]

, c
)

n

C.2 Lemmas used in the proof of Lemma 5

Lemma 11.

envof(ecs) (p) (P) (s) ⇒ ∃ c, ecs .

lookup ecs(p, ecs) = (c, ecs, envof(ecs) (p))

Lemma 12. lookup ecs(p, ecs) = (c, ecs, pt) ⇒ lookup(p, csof(ecs)) = (c, csof(ecs))

References

1. R. J. R. Back. A calculus of refinements for program derivations. Acta Informatica,
25(6):593–624, August 1988.

16

2. B. Barras, S. Boutin, C. Cornes, J. Courant, J.C. Filliatre, E. Giménez, H. Herbelin,
G. Huet, C. Mu noz, C. Murthy, C. Parent, C. Paulin, A. Säıbi, and B. Werner.
The Coq Proof Assistant Reference Manual – Version V6.1. Technical Report 0203,
INRIA, August 1997.

3. D. Carrington, I. Hayes, R. Nickson, G. Watson, and J. Welsh. Refinement in
Ergo. Technical report 94-44, Software Verification Research Centre, School of
Information Technology, The University of Queensland, Brisbane 4072. Australia,
November 1994.

4. T. Coquand and G. Huet. The Calculus of Constructions. Information and Com-

putation, 76:96–120, 1988.
5. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
6. J.-C. Filliâtre. Proof of Imperative Programs in Type Theory. In International

Workshop, TYPES ’98, Kloster Irsee, Germany, volume 1657 of Lecture Notes in

Computer Science. Springer-Verlag, March 1998.
7. T. Kleymann. Hoare Logic and VDM: Machine-Checked Soundness and Complete-

ness Proofs. Ph.D. thesis, University of Edinburgh, 1998.
8. J. Knappmann. A PVS based tool for developing programs in the refinement cal-

culus. Marster’s Thesis, Christian-Albrechts-University, 1996.
9. L. Laibinis and J. von Wright. Functional procedures in higher-order logic. Tech-

nical Report TUCS-TR-252, Turku Centre for Computer Science, Finland, March
15, 1999.

10. L. Lindqvist. A formalization of Dijkstra’s predicate transformer wp in Martin-Lof

type theory. Master’s Thesis, Linkopin University, Sweden, 1997.
11. Z. Luo. Computation and Reasoning: A Type Theory for Computer Science. Num-

ber 11 in International Series of Monographs on Computer Science. Oxford Uni-
versity Press, 1994.

12. C. Morgan. The specification statement. ACM Transactions on Programming

Languages and Systems, 10(3):403–419, July 1988.
13. J. M. Morris. A theoretical basis for stepwise refinement and the programming

calculus. Science of Computer Programming, 9(3):287–306, December 1987.
14. T. Nipkow. Winskel is (almost) right: Towards a mechanized semantics textbook.

In V. Chandru and V. Vinay, editors, Proceedings of the Conference on Founda-

tions of Software Technology and Theoretical Computer Science, pages 180–192.
Springer-Verlag LNCS 1180, 1996.

15. B. Nordström, K. Peterson, and J. M. Smith. Programming in Martin-Lof’s Type

Theory, volume 7 of International Series of Monographs on Computer Science.
Oxford University Press, New York, NY, 1990.

16. R. J. R. Back and J. von Wright. Refinement concepts formalized in higher-
order logic. Reports on Computer Science & Mathematics Series A—85, Insti-
tutionen för Informationsbehandling & Mathematiska Institutet, Åbo Akademi,
Lemminkäinengatan 14, SF-20520 Turku, Finland, September 1989.

17. M. Staples. A Mechanised Theory of Refinement. Ph.D. Dissertation, Computer
Laboratory, University of Cambridge, 1998.

18. M. Staples. Program transformations and refinements in HOL. In Y. Bertot
G. Dowek, C. Paulin, editor, TPHOLs: The 12th International Conference on The-

orem Proving in Higher-Order Logics. LNCS, Springer-Verlag., 1999.
19. J. von Wright and K. Sere. Program transformations and refinements in HOL. In

Myla Archer, Jennifer J. Joyce, Karl N. Levitt, and Phillip J. Windley, editors,
Proceedigns of the International Workshop on the HOL Theorem Proving System

and its Applications, pages 231–241, Los Alamitos, CA, USA, August 1992. IEEE
Computer Society Press.

