
Identifying Structural Features of Java Programs by Analysing the

Interaction of Classes at Runtime

Michael P. Smith and Malcolm Munro

Visualisation Research Group

Department of Computer Science, University of Durham

Durham, DH1 3LE, UK.

{m.p.smith, malcolm.munro}@durham.ac.uk

Abstract

This paper describes research on visualising Java

software at runtime in order to enable the

identification of structural features. The aim is to

highlight both the static and dynamic structure of the

software and aid software engineers in tasks requiring

program comprehension of the code. The paper takes

the position that this type of analysis and visualisation

for object oriented languages must be carried out with

dynamic runtime information and that it cannot, in

general, be obtained by static analysis alone. A case

study is worked through to demonstrate the approach.

1. Introduction

Knight and Munro define software visualisation as

"software visualisation is a discipline that makes use of

various forms of imagery to provide insight and

understanding and to reduce complexity of the existing

software system under consideration.” [4]. It is this

definition that this paper build on to investigate the

structural features of Java programs.

The process of understanding software is

fundamental to the majority of, if not all, software

engineering tasks. Tasks such as development, testing,

debugging, maintenance and performance tuning all

require some understanding of the software at the

source code level. The code defines the static structure

of the software and thus is essential for understanding;

however, it can be difficult to get a true understanding

from only this static description. This is particularly so

for object-oriented software as the paradigm introduces

new language features such as polymorphism and

dynamic binding that makes analysis and

comprehension more difficult. Object-oriented software

has many advantages, however Jerding and Stasko

suggest it is "a double-edged sword" [1]. This is partly

due to the discrepancies between the static class

descriptions and runtime behaviour as networks of

communicating objects [2] [3]. For example, De Pauw

et al. state that “There is a dichotomy between the code

structure (static hierarchies of classes) and the

execution structure (dynamic networks of

communicating objects) of object-oriented programs.

The programmer must understand and map between

these structures, a significant burden even after the

programmer is familiar with them.” [3]. Because of

this De Pauw et al. state that “Insight into dynamic

aspects is critical for understanding, tuning and

debugging object-oriented software” [3]. This

discrepancy is the motivation behind this research,

which aims to improve program comprehension of

object-oriented systems by analysing and visualising

both their static and dynamic structure through the use

of a number of visualisations.

2. DJVis Visualisations

DJVis is a visualisation tool designed to show

details of Java software as it executes [5][6][7]. It

connects to an executing Java program through the

Java Platform Debugger Architecture [8] to extract

program events. The tool has a number of different

views, each of which shows some aspect of a Java

program. The main views are: the Runtime View

(shows threading and call stack details); the Query

View (supports the Runtime View by allowing user

controllable grouping and exploration of information);

the Class View (provides class level details of the

software); the Method Pixel View (provides details of

method calling relationships); and the Variable Watch

View (provides a history of read and write access to a

variable). This paper will use the features of the Class

View.

The Class View in DJVis is designed to show the

structure and relationships between classes. The view

uses an augmented graph representation, with the nodes

representing types in the software and the edges

representing relationships between the types. The

nodes are circular and are augmented with additional

details about the type. Coming out from the node by

default are 'method lines'. Each line represents a

method defined by the class and the length and colour

of the line represents metrics for that method. Table 1

shows the representations used in the Class View. A

full explanation is given in the papers referenced

above.

Table 1 Class View Representations

Representation Meaning

Class (shading represents

metric (number of

instances created by

default))

Interface

Inner Class (inner shading

represents metric)

A class and its methods

(length and shading

represent user selectable

metrics)

A class and its fields

(shading represents user

selectable metrics)

Type yet to be loaded

Package type belongs to

(Colour coded by

package)

The Class View uses colour extensively to convey

information, however these colours have been mapped

onto different grey scales where possible to facilitate

printing in black and white.

3. Case Study

The case study will focus on analysing a real piece

of software called GraphTool. GraphTool is a graph

editing tool that provides some simple layouts and the

ability to group nodes and edit graph display

properties. It is approximately 19,000 lines of Java and

so represents a small to medium scale application. The

tool is used internally within the Department of

Computer Science at the University of Durham. It is

made up of 86 classes defined in 66 source files. The

authors had no experience of the source code before

applying DJVis to it. Therefore, all knowledge gained

about its structure came through the use of the

visualisation and not through experience of the source

code or through the use of other tools.

The Class View of DJVis was used to inspect which

classes are used by the application and to investigate

the complexity of the class relationships. Figure 1

shows the graph as presented in the Class View at the

point when GraphTool had been initialised and is

showing its user interface. The nodes represent types

(for example a class and its methods on row four of

Table 1), and the arcs represent references.

Figure 1 shows that there are two sub graphs and a

number of unconnected classes. In this view, the edges

represent class references, therefore the unconnected

classes are not referenced by other classes through the

use of field references. These unconnected classes

appear to be utility classes with limited functionality.

The main focus of the investigation into the software's

structure will therefore focus on the two sub graphs.

The small sub graph in the bottom left of Figure 1

contains five classes. Inspection of the class names

(and optionally the method names and source files

using a pop up browser) indicates that these classes are

used for lexical analysis and for the management of

tokens in a linked list. There is no other functionality

provided by the classes and they do not seem to be

heavily interconnected with the other classes.

Therefore, this sub graph does not appear to be of any

real interest and can be abstracted or even filtered from

the tracing as it produces a large number of method

calls for the list and token operations. The large sub

graph, therefore, appears to be the main item of interest

and this presents a number of interesting features,

which are labelled in Figure 2.

Feature 1

There is a cluster of classes from the central

GraphDesktop class. Their names all end in the word

"Menu" and closer inspection of the actual GraphTool

user interface shows that the names correspond directly

to the actual menu headings in the main windows title

bar. Therefore, one can hypothesise that these classes

implement the main menus for GraphTool. Inspection

of the classes using the pop-up browser supports this

and shows that they all inherit from the Java API class

"JMenu" and implement "ActionListener". The only

exception to this is the inner class "1" which is also in

this cluster.

Feature 2

This cluster is centred on the "Preferences" class

which references six classes, whose names all end in

the word “Preference”. This naming would therefore

suggest that they are responsible for the preference

options and closer inspection of GraphTool user

interface reveals a preference option under the

GraphTool menu. This brings up a dialog box that has

six categories that relate to the names of the classes.

The classes in the cluster have a similar shape and

inspection of the method names shows that they all

provide the same methods (load, save, copy and set

defaults). However, changing the edges to show

inherits and implements relationships shows that this is

not enforced through the use of an interface. As

GraphTool displays the Preferences dialog box, a

number of classes are loaded and then instantiated and

these changes are reflected in the Class View

Figure 3 shows the result of opening the Preferences

dialog box on the Class View display. The view shows

that new classes have been loaded and these are shown

in the annotated group "B". The existing preferences

classes remain (shown as group "A") but the central

Preferences class of the group is now referenced by

many of the new classes in group "B". It can be seen

from the class naming that these new classes have the

same names as the classes in group “A” except they

have "Panel" on the end of the names. These classes

therefore handle the user interface panels for the other

classes, which actually contain the data for each subset

of the preferences. These ‘panel’ classes also have one

method that is significantly longer than the rest and

investigation of this, using the mouse over details,

shows that this is the constructor method for each of

the classes. This example highlights how runtime

information can be used to filter the classes under

study, as classes are only loaded and therefore

Figure 1 GraphTool classes after initialisation as shown in the Class View

presented at the point they are needed. Therefore, if the

user were considering some other aspect of the

GraphTool software, they would not have to consider

these additional preferences classes. A static analysis of

the software would present all these classes, which

could add complexity to the resulting visualisation.

Feature 3

This cluster of classes handles menu code and

popup menus as suggested by the names of the classes

and the method names. The classes contain relatively

little code (shown by the short method line lengths) and

most of the method names are repeated across the

classes as they all implement the ActionListener and

ItemListener interfaces of the Java API.

Feature 4

The BatchProcessor class has one very long private

method which when inspected using mouse over is

called "processCommand". The class appears to

support batch processing from its name and the names

of its methods. The "processCommand" method has yet

to be called, which can be seen by changing the method

line colour mapping to represent the number of calls. If

the user is interested in this possibly anomalous method

they could use the pop-up browser. This provides

detailed information on the class and its methods

including the source code and the calling summary.

Feature 5

This is the class "FrontEnd". This is a static class

(shown by having no instances (white class node)) and

it references many of the main classes in the program.

This would appear to be a central class through which

the other classes are joined. If the Class View is open

while the GraphTool program initialises, then it can be

Figure 2 Identification of interesting features in the main sub graph.

seen that this class is loaded second and then all the

classes it references are loaded. Closer investigation

shows that the GraphTool class (the initial class

containing the main() function) is just a wrapper for

FrontEnd. The FrontEnd class’ role is to create and

initialise the main classes of the software and to act as a

central point to reference the other important classes.

Changing to the field representation also shows that

these references are all public.

Feature 6

This is the class GraphContainer and stands out as a

class with a very large number of methods, some of

which are long in length. It has ninety-seven methods,

however, only nine of these are private suggesting that

this large amount of functionality is offered to other

parts of the program. Also, the class only has two fields

(identifiable by changing the display from method lines

to field triangles) suggesting that it operates on data

provided by other classes, and in particular, the graph

class which it references using one of the fields. The

class appears to have numerous methods that operate

on the graph, and is therefore an important class to

comprehend in terms of how the software implements

its functionality.

Feature 7

The GraphCanvas class also has a large number of

methods and would appear from first impressions to be

the second most complex class after GraphContainer in

terms of the number of methods. However, in the case

of GraphCanvas a large number of its methods are

short in length and investigation of the method names

shows that class is mainly concerned with displaying

the graph, as the Canvas part of the name suggests.

Feature 8

The class Graph would be expected in an

application focusing on graph display and editing. One

may expect that this would hold a large amount of

functionality on managing and updating the graph.

However, first impressions suggest that this is not the

case for GraphTool as the class has relatively few

methods and most of them are short in length, therefore

the class does not represent a significant amount of the

code base. Inspection of the method names or source

shows that the class provides basic addition and

deletion of nodes and edges, however no layout or

other graph operations are provided. Switching the

view to display the variable details of the classes allows

the Graph class to be investigated further.

Figure 3 Classes loaded as a result of displaying the Preferences Dialog

Figure 4 Invesigating field names and types
using mouse over information

Figure 4 shows that the Graph class has only four

fields and that one field of the Graph class is a vector

called nodeList. The class also has a edgeList vector,

therefore from these names and the simple addNode()

and addEdge() methods of the class, the user can see

that these vectors store the nodes and edges of the

graph. However, it can be observed from Figure 4 that

these fields are public (shown by the green shading of

the field triangles) and can therefore be modified by

other classes. This could indicate that the graph

functionality may be dispersed over a number of

classes and this class could be heavily coupled to the

other classes due to these public fields. The small

amount of functionality provided by this class is

obvious from the visualisation. The far greater

complexity of the GraphContainer and GraphCanvas

classes provides a cue to the user that it is these classes

that need to be focused upon.

Features 9 and 10

There are "Node" and "Edge" classes, as one would

expect in a graph application. These classes have yet to

be loaded by the JVM, as they have not yet been

needed. This is shown by the dotted line of the class

node.

The initial view also allows an idea of the

programming techniques to be assessed. The user can

see that the package circles are all the same colour

therefore indicating that the code is all in one package,

which in this case is the default package. The

references (when selected as the edge type) are all

static. This is combined with minimal use of user

defined interfaces, in fact, only one "Timed" is used

which is implemented by three classes. There is also no

inheritance between the user-defined classes. It can

also be seen that there is limited encapsulation with

many key data structures being public. The

functionality of GraphTool is also heavily clustered

into a limited number of classes. This relatively quick

investigation of the program allows the user to gain

some idea of its structure, in terms of the classes and

their relationships.

 From this initial overview the user can identify

structural features of interest to their task. They can

abstract or filter features of little interest to simplify the

visualisation. They can also use the integrated views to

investigate the features further. For example, by

looking at the field accesses and at the calling

relationships and histories, and through specifying

custom mappings to highlight metric values of interest.

4. Conclusions

The paper has show the application of the DJVis

visualisation tool in identifying the structure of a Java

program. The program is executed in conjunction with

the DJVis tool and the Class View visualisation is used.

This visualisation shows the interaction between

classes at runtime and helps in identifying structural

features by easily showing partitions of the class graph.

This type of analysis cannot be carried out in general

through static analysis.

5. References

[1] D. F. Jerding and J. T. Stasko, "Using Visualization to

Foster Object-Oriented Program Understanding", Graphics,

Visualization and Usability Center, Georgia Institute of

Technology, Technical report GIT-GVU-94-33, 1994.

[2] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design

patterns: elements of reusable object-oriented software,

Addison-Wesley, 1994.

[3] W. De Pauw, D. Kimelman and J. Vlissides, "Visualizing

Object-Oriented Software Execution", In Software

Visualization, J. T. Stasko, J. B. Domingue, M. H. Brown and

B. A. Price (eds.), MIT Press, 1997.

[4] C. Knight and M. Munro, "Visualising Software – A Key

Research Area", Proceedings of the IEEE International

Conference on Software Maintenance, Oxford, England,

August – September 1999.

[5] M. Smith, "Runtime Visualisation of Object-Oriented

Software", PhD Thesis, Department of Computer Science,

University of Durham, 2003.

[6] M. Smith and M. Munro, "Runtime Visualisation of

Object Oriented Software", Proceedings of the IEEE 1st

International Workshop on Visualizing Software for

Understanding and Analysis, Paris, June 2002, pp. 81-89.

[7] M. Smith and M. Munro, “Providing a user customisable

tool for software visualisation at runtime”, IASTED

International Conference on Visualization, Imaging, and

Image Processing (VIIP 2004), 2004

[8] JavaTM Platform Debugger Architecture,

http://java.sun.com/products/jpda

