
Copyright 2002 IEEE

Published in the First IEEE International Workshop on
Visualizing Software for Understanding and Analysis

June 26, 2002 in Paris, France

Personal use of this material is permitted. However,
permission to reprint/republish this material for
advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or
lists, or to reuse any copyrighted component of this work
in other works must be obtained from the IEEE.

Contact:
Manager, Copyrights and Permissions / IEEE Service Center /
445 Hoes Lane / PO Box 1331 / Piscataway, NJ 08855-1331,
USA.
Telephone: + Intl. 908-562-3966

Revision Towers

Christopher M. B. Taylor and Malcolm Munro
Visualisation Research Group,

Research Institute in Software Evolution.
Department of Computer Science,

University of Durham,
Durham, DH1 3LE, UK.

{C.M.B.Taylor, Malcolm.Munro}@durham.ac.uk

Keywords: Software Visualisation, Version Control, Configuration Management, Software Evolution, Open Source

Abstract

The use and development of open source software has
increased significantly within the last decade. With it has
come an increased, and necessary, use of version control
tools to provide project management. A typical repository
contains a mine of information that is not always obvious,
and not easy to comprehend in its plain form. A
visualisation has been created from this information to
display how the repository has evolved. The visualisation
allows the user to see where the active areas of the
project are, how often, and how, changes are made, and
how work is shared out across the project. Colour, layout
and animation are all important features of the
visualisation. In addition, issues of the importance and
use of animation and consistency are raised. A prototype
tool has also been developed to show how the
visualisation works in practice.

1. Introduction

The development and use of open-source software has
increased significantly in the last few years [1]. Online
repositories such as SourceForge [2] actively encourage
and support the concurrent development of open-source
projects, with a version control system to aid the
development of the project.

An important part of these repositories is that they
encourage anyone to participate in the development of the
project. Many of these participants will never have met,
and the sole source of communication will be mailing
lists, or failing that, examination of the source code itself.
The vast majority of the participants also do not work on
the project full-time [1]. This means that it is unlikely that

the participant will have a good understanding of the
current state of the software project, particularly with a
large number of developers working simultaneously. It is
not uncommon for such projects to have weekly releases.
Consequently, being unable to work on the project for
even a short length of time may make it difficult for the
participant to come to terms with the recent progress. The
documentation, and particularly a change log, may aid
this process, but the presence of this information can not
be guaranteed.

Alternatively, it may be the case that a skilled software
engineer wishes to join the project. As stated, the
documentation often falls behind the current state of the
software, and so the engineer must rely on the source
code to comprehend the system. However, with possibly
hundreds or thousands of files of source code to consider,
and little idea of the importance of each, it may be that the
engineer decides not to make that initial investment. The
result is that the skills that they could have contributed to
the project would be lost. In addition, it may not be
apparent from the documentation who has responsibility
for the various parts of the project, or who has the best
understanding of the area. In this case, knowledge
possessed by the more experienced developers working
on the project may never be transferred.

A final picture is that of a manager of the project. It
may be that they wish to understand the areas of the
source code undergoing most development, and those that
have not been recently worked on. Alternatively, they
may wish to examine the reliability of code developed by
a particular author, perhaps in order to encourage them to
work on a more or less critical part of the project. Finally,
they may wish to see the parts of the project that become
affected when new functionality is implemented.

These scenarios are realistic, and may be applied to
small-medium sized software projects (about 50 - 500K
LOC). Typically, these projects could be anything from
serious development tools and environments through to
multi-player networked games. There is clearly no single
solution to completely solve all of these problems.
However, much relevant information can be gleaned
solely from the version control repository that is an
integral part of such open-source projects, as
demonstrated by [3],[4], allowing conclusions to be
drawn about the state and direction of the project.

Almost all version control systems will contain some
means of viewing the current state of the repository. This
is normally done using a text-based system, for example
by CS-RCS [5]. Some newer systems (such as VRCE [6])
will also allow the viewing of the structure of a file within
that repository, allowing information about a particular
revision to be viewed quickly. However, what is less well
supported is the viewing information relating to the entire
repository. Due to the size of a typical repository, and
number of relations that exist within this data, the task is
one well suited to visualisation. Knight [7] states that
software visualisation “makes use of various forms of
imagery to provide insight and understanding and to
reduce complexity of the existing software system under
consideration.” Therefore, by showing the information
within the repository using visualisation techniques, it is
hoped to provide an increased understanding of specific
parts of the project, with the aim of finding some partial
solutions to the problems encountered when
comprehending open source software.

2. Similar work

At least two visualisations have been developed which
take this approach specifically. VRCS [8], shown in
figure 1, shows clearly the relationships that exist within a
small repository. A graph drawn in 3D space is used to
show the state of the repository - heavy lines show the
evolution of an individual file, and light lines indicate
how these files affect particular releases. Time is shown
using the Z-axis. The visualisation is very clear on a small
scale - it is easy to see that file A has gone through four
revisions, with v.3 used for the second release of the
system. However, Young when evaluating Zebedee [9] - a
visualisation using 3D space to lay out a call graph -
commented that the visualisation ran into problems as the
size and scale of the graph increased, often with the 3D
nature of the graph contributing to the apparent
complexity. Therefore, the benefits of VRCS when used
with much larger projects are unclear.

Figure 1 - VRCS [8]

The second, more promising, alternative to solving the
problems set is 3DSoftVis [10], shown in figure 2.
Although initially more difficult to understand than
VRCS, a similar amount of information is displayed
whilst handling repositories of a much larger scale. This
visualisation is a result of zooming in to a subsystem of a
much larger software project. Each column represents a
file within that subsystem. Each row represents the state
of that file at a given Release Sequence Number (RSN).
Each RSN represents a release of the software. The colour
of a square indicates the RSN at which it was last
changed.

It can be seen from figure 2 that modules A and B
were created at release five of the system, and have since
undergone four changes. Module C has been modified at
every release, in contrast to module D that has remained
unchanged. Modules E and F were introduced for release
4, and Modules G to L were no longer incorporated at this
point.

This visualisation also has a number of problems
however. Firstly, although capable of handling a large
number of modules - the visualisation has the potential for
displaying several hundred - the number of releases that
can be shown is limited, as a separate colour is required
for each. Individual revisions that occur between releases
are also considered as a single entity. Whether this
abstraction is useful depends very much on the frequency
of releases of the project. Projects that have releases every
day will quickly exceed the number of colours that can be
differentiated clearly. A project that has files updated
frequently, but has a formal release on an infrequent
basis, will abstract away many of the changes that a
developer would be interested in.

Figure 2 - 3DSoftVis [10]

Although 3DSoftVis covers some of the management
aspects of the set problem, neither is ideally suited to the
user. In the case of VRCS, although the detail exists it is
presented in a restrictive and, on a realistic scale,
confusing manner. In the case of 3DSoftVis, much of the
interesting detail is abstracted away. It would be difficult
to provide this information using the same view however,
and so an alternative method is presented. This method
provides most of the detail of the structure of the
repository provided by VRCS at the cost of a less
extensive view provided by 3DSoftVis. Furthermore, this
alternative view allows more information from the log
files to be displayed; dates can be considered in addition
to the system releases, and there is support for providing
more details of how the files have been modified, and by
whom.

3. Revision Towers

Revision Towers, as with VRCS and 3DSoftVis, uses
data obtained from typical version control log files. In this
case, the visualisation is based around the information
provided by using the ‘ log’ options available within the
version control systems RCS and CVS. This information
can be provided quickly and easily, without extensive
processing of the entire project. The log provides details
for each file within the project, containing information
such as the user who checked in the file, the date, and the
version number. Also included is the number of lines
changed since the last version, and a comment field which
should be filled by the author when checking in.

A tower, shown in figure 3, represents two log files
that are viewed side by side. (Towers are displayed in full
colour, but have been converted to greyscale for printing
purposes.) The central section represents software
releases, as recorded within the log file, with earliest
releases at the base of the tower, and the latest, as yet

unreleased, at the very top. Each side section represents
the history of a file, and how the individual versions of a
file map to the releases.

Figure 3 - A revision tower

The towers are then displayed in a grid formation to
fill the available display area, ordered according to the
date of file creation. The visualisation can be seen as one
with similarities to 3DSoftVis, but where modules are
paired off and separated. The purpose of this is to allow
one-to-one comparisons to be made. The main intention
of this is to compare a header file (.h) and an
implementation file (.c) against each other, and so is
particularly appropriate for a language using this structure
such as C, or C++. In particular, use is made of the fact
that header files and implementation files are usually
named identically. This allows pairings to be generated
automatically from the log file, without requiring further
parsing of the actual files within the repository. This
reduces the processing requirements significantly,
allowing visualisations to be generated very rapidly. A
header file will always be shown on the left side of the
tower, and an implementation file on the right, to
emphasise the differences between the two types of file.

Each tower is initially normalised to be the same
height, and each release (central segment) given an equal
proportion of this height. This provides an immediately
accessible view that can be understood by a novice user.
However, the visualisation supports the resizing of the
central segments according to release date. Whereas ten
file updates within a single release may appear intensive
with the default view, if this release was shown to have
taken ten times longer than the average release, a more
accurate picture is obtained. A similar feature allows
segments to represent a timeline, with segments
representing days, weeks or months depending on the
frequency of development. This is particularly useful
when the ‘symbolic name’ feature within the log file is
not used, as an automatic and accurate visualisation can
still be created.

Each side segment of the tower represents a specific
version of the file. The side segments have variable
widths, and by default are used to show the change in file
size. Although an RCS log file does not include the
number of lines of code within a file, it does specify the
number of lines that have been inserted, and the number
deleted. As this information can be inaccurate depending
on how the changes were made, the visualisation does not
treat inserted lines and deleted lines separately, but rather
relies on an aggregate of the two to show the overall
difference.

The height of the side segment may be set in one of
two ways. The heights may be allocated within the space
of that release. For example, a file undergoing two
revisions within one release would mean each side
segment had a height that was half of the height allocated
to the central release segment. This view is useful in
providing a clear picture of how often each file changes
per release, or within the project as a whole.
Alternatively, the side segment heights can be allocated
proportionally to the time of check-in relative to the
release dates, so a version checked in very early after the
previous release, and well before the next one would have
a short height. This is a similar process to the resizing of
the central segment. Implementation against header file
comparisons should use this allocation method to gain an
accurate picture, or use the timeline with the first method
to display the same information.

Colour is used to show a further entity from the log.
Possibly the most useful within a CVS log is the author
that checked in the file. In this case, each side segment is
filled with a colour that maps to a legend representing
authors that has been extracted from the log files. The
user of the visualisation can change these colours in order
to highlight particular authors in a colour that is more
easily recognised. Importantly, these colours are
generated consistently, by allocating colours to authors in
order of the time that they were first involved with the
project. Therefore, the author who submitted the first file
will be allocated the first colour, and this will remain
throughout the lifetime of the project.

Finally, a timeline is also displayed. Although the log
file does not contain specific release dates, the
approximate date of a release can be derived from data
contained within the individual entries, and it is this that
is displayed. It is then possible to map individual towers
onto the timeline, highlighting the evolution of the files
within a release.

3.1. Animation

In Revision Towers, the user has partial control over
the layout of the visualisation. Some changes that are
made, such as changing the height of the central segment,
could be disorientating. However, using animation to
move smoothly between the different types of display
allows context to be maintained.

Animation is also used to display the development of
the repository. Using the timeline together with the main
view allows a view of the repository at any point in time.
This means the user is presented with a picture that is
built up slowly, rather than being presented with an entire
system instantly. This also means that files that are
introduced to the system do not need to be shown from
the beginning, but can be faded in at the suitable position.
The position of these towers is determined at the start of
the animation however, so that, for example, towers do
not move to allocate space for a new tower. As
unnecessary movement is eliminated, there is no danger
of the user being distracted by animation unrelated to the
data. The intention is to reduce the complexity of the
animation, and so increase understanding. Chi et al [11]
used a similar technique to show the evolution of web
sites.

Although the individual frames build up to the finished
picture, the animation presents information that may not
otherwise be obvious by looking at the final picture alone.
For example, figure 4 contains five frames from an
animation of the evolution of part of the Allegro [12]
graphics library over five releases. What is immediately
obvious is how the project management has changed
during this time. Initially, all check-ins were executed by
A. The second frame shows that almost all check-ins were
done by B. However, over time, new project members
have taken over, to a greater or lesser extent. This is not
immediately obvious from viewing the final picture in
comparison to the individual frames.

An important part of any animation such as this is that
the user has full control over the playback. Animations
that can only be played in one direction mean that the
animation will often have to be viewed many times in
order to understand how a particular state was achieved.
However, by allowing the animation to be played in both
directions, once an interesting state is displayed, it is
trivial to immediately rewind the animation a few frames
to determine how this state came about. The animations
can also be displayed at a number of speeds. This is
important as it allows familiar parts of the visualisation to
be skipped, whilst concentrating on the unfamiliar parts at
a slower speed.

1

2

3

4

5

A B C D E F

Figure 4 - Revision Towers animation

3.2. Layout

Within software visualisation, it is rare to consider the
layout issues that arise with an evolving data set. The
problem is not one of the layout of the current data, as
many suitable algorithms exist. Rather, the issue is
attempting to anticipate how the data might change at a
future point in time. For example, a repository may gain
several new files over a month. Visualisations created at
the start of the month, and at the end of the month, should
look similar in order to provide some context for the user
of the visualisation, particularly if they use the
visualisation on a regular basis. If the same object is
placed at the top left of the screen when the visualisation

is repeatedly created at different points in time, the user
will assume that any similar object appearing in that
position at a future date would refer to that same object.
However, with many layout algorithms that will not be
enforced. In particular, spring-based algorithms, which
are suitable for many graph layout problems, respond
particularly badly.

To avoid this problem, towers are laid out initially
according to creation date, and then alphabetically, left to
right and top to bottom. It is rare for files to be physically
deleted from a repository, but rather for them to be
marked as deleted. Therefore, providing space exists
within the view, towers will not need to move from their
original position, and so should be easily located within
future visualisations. As hinted, the main problem arises
when there is insufficient space to display the towers, and
either the size of the towers must be reduced to allow
more to be displayed, or the space must scroll to allow
more to be shown. The ideal solution would depend very
much on the type of repository being visualised - a very
large repository might be better suited to scrolling, but a
smaller one could work better with a reduced size. If the
size of a tower is reduced, this has an impact on the layout
of the towers, and recreates the original problem. The
solution is to retain the layout used when the visualisation
was last used by a particular user. Animation can then be
used to morph the original layout with the new, reduced
size, layout.

A common argument for using animation for a process
such as this is that it will maintain context between the
two views. Unless great care is taken over the two layouts
this is unlikely to be the case, as there will be too many
moving objects to be able to see the source and
destination of all of them, and this would be necessary to
completely maintain context. Any objects that had to
cross to reach their new position would further confound
the problem. Instead, in this case, the purpose of using
animation rather than displaying the new layout directly is
to offer the user of the visualisation some idea of the
extent of the layout changes. If only a few objects change
position, the user will be able to realise that the new
layout is reasonably similar to the previous one, and
therefore will be able to reuse the knowledge built up
from examining the previous visualisations. However, if
many objects change position, the user will realise that
there has been a significant change to the layout, and
possibly the repository, and so will also realise that
previous assumptions that had been made about objects at
specific locations are now likely to be unfounded.

Towers may also be rearranged to provide the user
with an alternative view. Whilst the initial view provides
consistency, it is not always the most appropriate layout.

Instead, it may be more useful to show the towers in order
of the number of changes made, or grouped according to
whether they were modified by a specific author. This can
be based on either a specific release, or for the entire
history. The location of the towers is then fixed by default
during the playback of the animation.

4. Scenarios

Three scenarios have already been presented
describing why an individual would have an interest in
viewing the contents of a repository. In order for the
visualisation to be considered useful, it should provide a
solution to each of those scenarios. To demonstrate how
the visualisation works, the tower shown in figure 3 will
be used as an example.

This shows a typical tower from a relatively small
project. The left side represents the header file, and the
right side represents the implementation file. Three
authors have worked on the file at some point, which is
clear from the three colours used. More specifically, the
first author (author A) appears to be no longer involved
with these files, as no check-ins have been made by them
after the first 6 releases. Author B has then taken over the
bulk of the work, with some assistance from the author C.

Although this view provides a brief summary of the
ownership of the file, closer examination allows more
information to be derived and deduced. In particular, the
role of author C is interesting. The author has only made
changes to the implementation files with the header files
unaffected. The file size after these changes (represented
by the length of the segment) has also increased in at least
two cases. (It may have increased in the top case also, but
due to the limited screen resolution, this can not be
confirmed from the picture alone. However, moving the
mouse over the segment in question displays all details
related to this segment, including the number of changes).
Therefore, it is clear that no major functionality was
introduced, as the header file remained constant during
this time. As this is a C++ program, it is possible to
assume that the header file would contain the class
prototype, and therefore the prototype has not changed.
So the likely changes would include bug fixes, adding
comments, or rewriting the method implementations to
improve them in some way.

Information such as this would be useful to both a
programmer and a manager. A programmer would know
that the class interface has changed only once in the last
three releases. Depending on when the programmer was
last involved in the project, they may wish to examine the
source code more precisely in order to determine exactly

what these changes were. However, rather than needing to
examine changes for every file in the system, or even files
related to their project area, they are immediately aware
of which files have changed, and by how much. This
enables them to concentrate on a smaller set of files.

Similarly, a manager may be able to draw some
conclusions about the skills of authors B and C. If the
pattern of these authors emerged elsewhere in the project
also, where C only makes changes to the implementation
files, it may be worth examining more closely the nature
of changes being implemented. If it is apparent that the
author is particularly proficient at optimising, for
example, it may be worth encouraging this author to work
in a more speed-critical part of the project. If, instead, it
appears that C is implementing a lot of bug fixes,
particularly as a result of coding by B, the manager may
wish to encourage B to work on a less critical part of the
project, or even leave the project altogether.

It is also possible to use the visualisation to get a good
idea of how the project is evolving. For example, the state
of the project just before the sixth release is worthy of
investigation. Here, it is possible to see that whilst the
size of the header file has increased, the size of the
implementation file has decreased. This, at first glance, is
an unusual situation. In this case, this was due to a section
of code being cut from the file, which was then pasted
into a new file. At the same time, some interface changes
were made to the header file to take account of the section
of code being moved. Therefore, the size of the header
file increased, and the size of the implementation file
decreased. This information may also be useful to a
programmer returning to the project after time away, as it
highlights the fact that code has been moved or deleted.

Further information that can be revealed from the
tower is that the file is relatively significant. Initially there
was a flurry of activity, which can be seen from the fact
that there were several versions before the first release.
Since that point, the files have been changed
approximately once per release, and, in general, have
been increasing in size at a constant rate. These frequent
changes, and particularly those to the header file, indicate
that it is often necessary to change the file in order to
incorporate new functionality into the project. Therefore,
it is probably worth spending time to understand the role
of the file. The frequent changes to the header file would
also be of interest to someone considering the use of the
software within their own development. It may be that
these changes regularly alter the interface, and so the
developer may wish to find an alternative, more stable,
solution to their requirements.

Finally, when multiple towers are displayed, animating
the creation of these towers conveys further information.

Although a limited number of towers may be mapped
simultaneously onto a timeline, this is not possible for all
of them. Similarly, whilst towers may be structured in
proportion to the date of release, this is not always
appropriate. Therefore, viewing the animation allows the
temporal details regarding the individual versions to be
displayed. For example, the fact that only two changes
occurred during releases two to four may be due to the
fact that there was very little time between these. This
information would again be useful to potential users of
the software, in determining the level of activity within
the project, and whether that activity is increasing or
decreasing. Alternatively, the animation can highlight
patterns within the repository that may not otherwise be
seen, as figure 4 demonstrates. Here, it is clear to see how
the project ownership has changed from author A in
frame 1, to B in frame 2, and C in frame 3. Frames 4 and
5 show a more open ownership, with more authors
responsible for check-ins. Developers preferring a more
open project management would find this useful.

Clearly, it is not possible to draw concrete conclusions
as to the behaviour of a large project by examining the
small degree of data presented. However, this is not the
intention of the visualisation, and it would be unwise to
use it as such. It is the intention to reduce the amount of
data that has to be considered before comprehending the
latest version of a system, and this is done by highlighting
potentially interesting areas within the repository, which
should then be investigated more closely. It should also
be considered that a single tower has been used to
demonstrate the visualisation. In reality, it will normally
be the case that several towers should be examined before
drawing any real conclusions about the state of the
project.

5. General Issues

Some outstanding issues remain with the visualisation
however, which are influenced by the data set used. The
programs RCS (and CVS), which provide the data used in
the Revision Towers tool, are based around the line-based
differencing tool ‘diff’ . This means that changes to the
file that only include whitespace, for example, blank
lines, will affect the recorded number of lines changed
within the log. Similarly, changes to comments will also
be flagged as a change. Although necessary to record
changes such as this within the repository so that they are
not lost, a visualisation such as Revision Towers would
benefit strongly from a version control tool that records
the changes intelligently, rather than just line by line. The
primary reason for this is that it would allow a much more
accurate comparison between the header and
implementation files. For example, whilst working with

an implementation file, it may be that the associated
header file is changed accidentally, for example, by
adding a blank line at the end of the file. Checking in the
files again would record this as a change, and so the
visualisation would suggest that more work than was
actually done took place.

A second issue regards the role of the ‘author’ within
the log. For a small project with a few developers who
have all been given full read/write access to the
repository, the author as listed in the log is likely to be the
author of the code that was added or modified. However,
within a larger project, it is the developer with the
responsibility for checking in work to that module that
will be credited with the change within the log,
sometimes with the actual author included as a comment
within the log, or within a separate changes file.
Therefore, when colour-coding the versions of a file
according to the author, it is not clear without examining
the management of a project in more detail whether this
generally refers to the author making the change, or the
project member with the responsibility for that module.

There are a number of potential solutions to this
problem. The first is to parse the comments associated
with a change intelligently, to try and determine the
developer who wrote the code. It may be that a specific
project has a standard way of generating comments, and
so it may be possible to tailor the visualisation to work
with a specific project. The second is to modify RCS (or
CVS) to include the developer as a separate field within
the check-in information, within the environment that it is
to be used. This would be feasible if the visualisation was
integrated into an online repository environment, such as
SourceForge [2]. Both of these solutions would raise
further issues within the visualisation, such as how
multiple authors contributing to changes checked-in as a
single version would be displayed.

6. Conclusions and Further Work

This paper has demonstrated that it is possible to use
the data contained within a version control repository to
create a useful and meaningful visualisation of the state of
an open source project. A specific visualisation, Revision
Towers, has been presented in order to demonstrate some
of the relationships and conclusions that can be drawn
from examining this data. A prototype tool has been
developed to show how the visualisation would work in
practice, and an example provided showing this working
with data taken from the Allegro project.

The layout of the information within the log is an
important part to the usefulness of the visualisation. By

pairing related files together, provisional conclusions may
be drawn rapidly about the state of the project, and how
individual files are evolving. Size and colour are used to
display further information about file size and ownership.

Animation is used by the visualisation in order to
present this information. Although animation has often
been suggested as a useful means of displaying time-
related data, there are few implementations where this has
actually been done. Some guidelines for the use of
animation in this way have been presented, and an
example of how the use of animation is beneficial over an
equivalent static picture has been provided.

Finally, the importance of the consistency of a
visualisation over time has been raised. The fact that a
visualisation should be consistent is well known, but this
concept has now been extended so that the visualisation
should remain consistent when provided with an evolved
data set. This is a little considered area within software
visualisation, and a possible means of achieving some
consistency has been presented.

There is much that could be done to improve Revision
Towers. Currently the visualisation is stand-alone, and
has no integration with a version control system.
Providing this integration would be valuable, and enhance
the usability of the visualisation. For example, clicking on
a version could check that version out of the repository.
Selecting a release could do the same for all files within
the project. Selecting two versions of a file could call a
file comparison program, and so on. Similarly, the
visualisation could be integrated with an online repository
CVS view as an alternative to the text-based log that is
often provided.

References

[1] A.Mockus, R.Fielding, J.Herbsleb, “A Case Study of
Open Source Software Development: The Apache
Server” , Proceedings of the 22nd International
Conference on Software Engineering, Limerick,
Ireland, 2000. pp263-272

[2] SourceForge web site. http://www.sourceforge.net

[3] T. Ball, J.-M. Kim, A. A. Porter, H. P. Siy. “ If your
version control system could talk...” Proceedings of the
Workshop on Process Modeling and Empirical Studies
of Software Evolution, Boston, MA, 1997

[4] S.G.Eick, T.L.Graves, A.F.Karr, J.S.Marron,
A.Mockus, “Does Code Decay? Assessing the
Evidence from Change Management Data”.
IEEE Transactions on Software Engineering, Vol.27,
No.1, Jan. 2001, pp1-12

[5] CS-RCS website .http://www.componentsoftware.com

[6] RCE website. http://wwwipd.ira.uka.de/~RCE/

[7] C.Knight, M.Munro, “Comprehension with[in] Virtual
Environment Visualisations” , Proceedings of the IEEE
7th International Workshop on Program
Comprehension, Pittsburgh, PA, 1999. pp4-11

[8] H.Koike, H-C Chu, “VRCS: Integrating Version
Control and Module Management using Interactive
Three-Dimensional Graphics”. Proceedings of 1997
IEEE Symposium on Visual Languages, Capri, Italy,
1997. pp170-175

[9] P.Young, "Visualising Software in Cyberspace", PhD
thesis, Dept. of Computer Science, University of
Durham, 1999

[10] C.Riva, “Visualizing Software Release Histories: The
Use of Color and Third Dimension” , Masters thesis,
Information Systems Institute, Technical University of
Vienna, 1998

[11] E. Chi, J. Mackinlay, P. Pirolli, R. Gossweiler, S. Card.
"Visualizing the Evolution of Web Ecologies". In
Proceedings of ACM Conference on Human Factors in
Computing Systems, Los Angeles, CA, 1998. pp400-
407

[12] Allegro website. http://alleg.sourceforge.net

