

PROVIDING A USER CUSTOMISABLE TOOL FOR SOFTWARE

VISUALISATION AT RUNTIME

Michael P. Smith and Malcolm Munro

Visualisation Research Group

Department of Computer Science, University of Durham

Durham, DH1 3LE, UK.

{m.p.smith, malcolm.munro}@durham.ac.uk

ABSTRACT

This paper describes research on developing a

customisable tool for visualising object-oriented software

at runtime. This aims to highlight both the static and

dynamic structure of the software and aid software

engineers in tasks requiring program comprehension of

the code. The paper specifically looks at some of the

customisation support provided by the tool and how a

simple representation can support a number of varied

tasks.

KEY WORDS

Software visualisation, runtime, dynamic, customisation.

1. Introduction

The task of understanding software is fundamental to the

majority of, if not all, software engineering tasks.

Development, testing, debugging, maintenance and

performance tuning tasks all require some understanding

of the software at the source code level. The code

provides the static structure of the software and this is

essential for understanding the software, however, it can

be difficult to get a true understanding from this static

description alone. This is especially true for object-

oriented software as the paradigm introduces new

language ideas which affect its analysis and

comprehension. Object-oriented software offers many

advantages, however Jerding and Stasko suggest it is "a

double-edged sword" [1]. This is due to the discrepancies

between the static class descriptions and runtime

behaviour as networks of communicating objects [2] [3].

For example, De Pauw et al. state that “There is a

dichotomy between the code structure (static hierarchies

of classes) and the execution structure (dynamic networks

of communicating objects) of object-oriented programs.

The programmer must understand and map between these

structures, a significant burden even after the programmer

is familiar with them.” [3]. It is due to this that De Pauw

et al. state that “Insight into dynamic aspects is critical for

understanding, tuning and debugging object-oriented

software” [3]. This is the motivation for this research,

which aims to improve program comprehension of object-

oriented systems by analysing and visualising both their

static and dynamic structure through the use of a number

of visualisations that provide the user with controls to

customise the representation to the user's specific task.

There is a vast amount of information that can be

extracted and analysed from a system's static description.

However, analysis of its runtime behaviour introduces

new information and a huge increase in the available

information. Even the analysis of a simple program may

lead to a huge amount of data, with details such as method

calls and object creation and destruction creating a large

and complex information space. It is for this reason that a

visualisation approach is used in an attempt to present this

large information space in a coherent way and allow the

user to drive the analysis and spot patterns and areas of

interest. Knight defines this area of software visualisation

as "software visualisation is a discipline that makes use of

various forms of imagery to provide insight and

understanding and to reduce complexity of the existing

software system under consideration.” [4].

This paper describes the DJVis tool and some of its

visualisation and customisation facilities. All of the

visualisations and customisation actions are available in

real-time as the program under study is executing.

2. The DJVis Tool

DJVis is a prototype visualisation tool designed to show

details of Java software as it executes [5][6]. It connects

to a running program through a debugging interface

(namely the Java Platform Debugger Architecture [7]) in

order to extract program events and control the program's

execution. The tool is comprised of a number of views,

each of which shows some aspect of the program under

study. Currently, the main views are: the Runtime View

(shows threading and call stack details using a 3D

representation [5][6]); the Query View (supports the

Runtime View by allowing user controllable grouping and

exploration of information [5][6]); the Class View

(provides class level details of the software [5][6], as

described in the following section); the Method Pixel

View (provides details of method calling relationships

[5]); and the Variable Watch View (provides a history of

read and write accesses to a variable [5]). This paper will

specifically focus on the customisation features of the

Class View.

2.1 The Class View

The Class View is an essential component of DJVis and is

designed to show the software under study in terms of its

classes and their structure and relationships. The view

uses an augmented graph representation, with the nodes

representing types in the software and the edges

representing relationships between the types. The nodes

are circular and are augmented with additional details

about the type. Coming out from the node by default are

'method lines'. Each line represents a method defined by

the class and the length and colour of the line represents

metrics for that method. Table 1 shows the

representations used in the Class View.

Table 1 Class View Representations

Representation Meaning

Class (shading represents

metric (number of

instances created by

default))

Interface

Inner Class (inner shading

represents metric)

A Class and its methods

(length and shading

represent user selectable

metrics)

A class and its fields

(shading represents user

selectable metrics)

Type yet to be loaded

Package type belongs to

(Colour coded by

package)

Figure 1 shows the representations of four example types

within the Class View. The top two types are showing the

method length and access rights using the method line

length and colour respectively. The XMLReader is an

interface which defines a number of methods while the

MessageCatalog is a class with a number of long methods

and a large number of instances (shown by the dark

shading of the class node). The bottom two classes are

showing their fields. Both classes have a number of fields

and the shading for the DisplayFrame classes represents

the access rights of the field while the shading of the

GraphCanvas represents the type of the field (primitive

type, system class, or user class).

Figure 2 Example of the Class View representation

Figure 2 shows an example of these representations in

use. In this example, the method lines are representing the

length of the method, while the shading is the access

rights of the method (public, protected and private). The

edges in the graph represent references between classes

with the black edges being static references while the grey

edges (actually red in the visualisation) show references

through a base type. The shading of the nodes represents

the number of created instances of that type. So from this

example it can be seen that the ParserImpl class has no

instances (as the node is white, further inspection of the

code shows that all its methods and fields are static). This

class has nine references to the Parser interface (far right),

and it has nine dynamic references to the Parse* classes

through these variables. The edges can be changed to

show the implements relationship, to confirm that all

these classes do implement the Parser interface. This

representation also allows an overview of the classes to be

seen. Each of the Parse* classes has one very short

method (in this case the constructor) and one longer

method (a Parse method from the Parser interface). The

ParserImpl class has a large number of methods, however

most of these are very short and inspection using the

popup source browser shows that these methods are

simply an interface to the Parse* classes.

Figure 1 Representing types within the Class View

Figure 3 shows an example of the popup source browser.

Here a cluster of classes is being inspected. The user is

viewing the source code for the emptyList() method

which belongs to the class to the left of the browser

window. The user can access the popup browser by

selecting a method of interest or by hovering the mouse

over a method. The popup browser allows the user to

quickly inspect the code and test hypotheses that the

visualisation may have generated. This also provides a

direct link between the representation and the underlying

code. For example, in Figure 3 the length of the method

lines are representing the length of the methods and the

shading is representing the number of calls (the darker the

shading the greater the number of calls). It can be seen

that very few of the methods have been called for these

classes and only a small number of objects of each type

have been created (shown by the light node shading). The

only exception to this is the TokenString inner class

which has had a large number of instances created and

one of its methods called frequently. Here the popup

browser could be quickly used to show that this is its

constructor and to inspect the body of the method if

desired.

Figure 4 shows an example of displaying field

information. Here the shading represents access rights

allowing the user to gain an overview of variable

encapsulation and identify any areas with poor

encapsulation (i.e. many public fields).

Figure 3 Popup source browser

 Figure 4 Overview of variable encapsulation

2.2 Customising the Class View

This relatively simple representation can display a large

amount of information through its support for user

customisation. Instead of trying to display all the

information at once, the visualisation allows its basic

elements to be used to represent a variety of information

about the program under study. This is achieved by using

drop-down lists at the top of the Class View's main

window. These control what the individual elements

(method line length and shading, node shading and

labelling, and edge types) represent and provide an easy

way for the user to read off the current settings, thus

preventing user disorientation. The view also offers

options for controlling the graph layout and the scaling of

the nodes and edges. These settings are controlled by

sliders down the left side of the view.

Figure 5 provides an example of the Class View in action

and shows the layout of the user interface. Here a web

server is being visualised. The edges of the graph are

representing the creates relationship and the method lines

are showing the length and access rights of the method

using the method line length and colour respectively. The

dispersion pattern in the graph in the overview window

shows the clustered creation patterns with a few key

classes at the centre of the clusters and then the outward

spread of class creation. The view is zoomed in to see a

specific section, with one of the central classes shown

(XMLConfiguration (bottom right)) and chains of

creation coming out from it (for example the

SocketListener chain).

The displayed information can be adapted to specific

tasks through the use of custom mapping modes. These

map the metrics, such as the number of method calls or

method length, before they are applied to the

representation. A number of mappings are provided such

as linear, logarithmic, scaled and fixed length, however

the flexibility comes from allowing the user to define their

own mappings to suit a particular task. The mapping

functions are defined by graphical manipulation in a

manner similar to the 'curves' options in image editing

applications. The mappings can then be saved and

selected using the drop down list, as with the pre-set

mappings.

Figure 5 DJVis using the Class View to visualising an executing web server.

Figure 6 demonstrates four possible mapping modes that

can be defined for the method line lengths. Graph (a)

would show only items of values x and over and these

would be represented with a constant length of ten pixels.

This could be used for example to show methods over a

certain size, or to highlight frequently called methods.

Graph (b) maps all values to the same value, except zero.

This setting could be used to show only those methods

that had been called (irrespective of the actual number of

calls) or to show nonempty methods (exclude those that

are defined but have zero length). Graph (c) shows an

alternative case where all values above zero are mapped

to a small fixed length while values of zero are mapped to

a longer length. This mapping will allow all values to be

seen, but will make values of zero prominent. This

mapping could be useful for example in a testing setting.

Running the program under its normal execution, or over

a specific test case will use certain methods of the

software. After the execution, this mapping can be used to

easily identify classes and methods that have not been

covered in the execution. Figure 7 shows an example of

this mapping in use where it is applied to the number of

calls before they are represented using the method line

length. In this example it can easily be seen that a number

of the classes have yet to have a number of their methods

called. For example, the Configuration class (top right)

has only had two of its sixteen methods called. The

mapping could also be used to inspect if a particular

method was called such as an initialisation method before

a specific section of execution. Finally, graph (d) in

Figure 6 shows a mapping that would restrict the method

lines to a maximum length of thirty whilst making smaller

changes more prominent. Mappings such as this and the

logarithmic pre-set allows the visualisation to present a

diverse range of values whilst preventing large values

from obstructing and dominating the visualisation. This is

particularly important for showing information such as the

number of method calls.

This approach of definable mappings allows for user

customisation and it can be applied to any metric that

maps to a numeric value. So for example, if support for

obtaining method complexity was added to the prototype

Figure 6 Example of custom mappings for method

line length

Figure 7 Viewing uncalled methods for a coverage summary

tool then this could be represented using the method line

length. Custom mappings could then be used to

effectively hide simple methods, while highlighting

methods above some threshold of complexity. This would

be useful for preventative maintenance tasks where there

is a desire to find and improve complex methods.

The mapping functions can also be applied to the shading

of items to defined brightness levels dependant on values,

for example for the node or method line shading.

Some of the data visualised in the Class View has a

temporal nature, for example, method calls are ordered.

Such temporal relationships are not explicitly shown in

the Class View itself, however the view can give an

indication of this data through the use of transparency of

items. This is primarily used to represent method calls in

order to highlight which classes and methods have

recently been involved in the execution. Here, methods

that have been called recently are fully opaque while

those that have not been called for a long time period

appear increasingly transparent. This transition can be

controlled through a number of pre-set mappings or

through defining a custom mapping function. This is

designed to allow the user to spot execution patterns in

the view.

3. Related Work

A number of existing approaches have investigated

runtime analysis and visualisation of object-oriented

software. However, due to the large information space

and the varied task set which this information can support,

the existing work has only scratched the surface of the

potential for program comprehension tasks. Work in this

area includes Jinsight [8][3] and Program Explorer [9],

which is a program visualiser for C++ developed by IBM

research. There has been other research looking at a

variety of topics, including the extraction of UML

sequence diagrams [10], performance tuning tools [11]

and tools to aid teaching and debugging, such as

VisiVue
TM
 [12]. The DJVis approach offers a variety of

different visualisations and is notable for its focus on the

use of user customisation to allow for specialisation.

4. Conclusion

This paper has described the customisation features of the

Class View and shown how it allows the visualisation to

be adapted to specific tasks. This customisation is at two

levels:

1. The user controls which metrics are applied to which

representations within the visualisation.

2. The user controls how the value of metrics are

mapped before they are applied to the representation.

These two customisation features provide a large amount

of flexibility and allow the visualisation to be tailored to

highlight specific patterns of interest to the user.

5. References

[1] D. F. Jerding & J. T. Stasko, Using Visualization to

Foster Object-Oriented Program Understanding,

Graphics, Visualization and Usability Center, Georgia

Institute of Technology, Technical report GIT-GVU-94-

33, 1994.

[2] E. Gamma, R. Helm, R. Johnson & J. Vlissides,

Design patterns: elements of reusable object-oriented

software (Addison-Wesley, 1994).

[3] W. De Pauw, D. Kimelman & J. Vlissides, Visualizing

Object-Oriented Software Execution, In Software

Visualization (J. T. Stasko, J. B. Domingue, M. H. Brown

& B. A. Price (eds.), MIT Press, 1997).

[4] C. Knight & M. Munro, Visualising Software – A Key

Research Area, Proceedings of the IEEE International

Conference on Software Maintenance, Oxford, England,

1999.

[5] M. Smith, Runtime Visualisation of Object-Oriented

Software, PhD Thesis, Department of Computer Science,

University of Durham, 2003.

[6] M. Smith & M. Munro, Runtime Visualisation of

Object Oriented Software, Proceedings of the IEEE 1st

International Workshop on Visualizing Software for

Understanding and Analysis, Paris, 2002, 81-89.

[7] Java
TM
 Platform Debugger Architecture

http://java.sun.com/products/jpda/

[8] Jinsight

http://www-106.ibm.com/developerworks/library/jinsight/

[9] D. B. Lange and Y. Nakamura, Program Explorer: A

Program Visualizer for C++, Proceedings of USENIX

Conference on Object-Oriented Technologies (COOTS),

Monterey, California, 1995, 39-54.

[10] K. Mehner and B. Weymann, Visualization and

Debugging of Concurrent Java Programs with UML,

Proceedings of the. Workshop on Software Visualization,

International Conference on Software Engineering,

Toronto, Canada, 2001.

[11] R. J. Walker, G. C. Murphy, B. Freeman-Benson, D.

Wright, D. Swanson and J. Isaak, Visualizing Dynamic

Software System Information through High-level Models,

Proceedings of the Conference on Object-Oriented

Programming, Systems, Languages and Applications,

(OOPSLA ’98), 1998.

[12] VisiVue
TM

http://www.visicomp.com/product/visivue.html

