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Abstract—Dominance trees have been used as a means for reengineering legacy systems into potential reuse candidates. The

dominance relation suggests the reuse candidates which are identified by strongly directly dominated subtrees. We review the

approach and illustrate how the dominance tree may fail to show the relationship between the strongly directly dominated procedures

and the directly dominated procedures. We introduce a relation of generalized conditional independence which strengthens the

argument for the adoption of the potential reuse candidates suggested by the dominance tree and explains their relationship with the

directly dominated vertices. This leads to an improved dominance tree, the moral dominance tree, which helps aid program

comprehension available from the tree. The generalized conditional independence relation also identifies potential reuse candidates

that are missed by the dominance relation.
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1 INTRODUCTION

FOR many companies, software drives the business and

provides the only true description of their operations.

As businesses evolve, so should the software. Thus, it is

necessary to perform software maintenance, “the modifica-

tion of software products after delivery to correct faults, to

improve performance or other attributes, or to adapt the
product to a changed environment,” [18]. Program com-

prehension, in this setting, involves acquiring knowledge

about programs, as well as any remaining documentation

and operating procedures. We aim both to understand the

software through visualization and to identify areas of the

code which may be remodularized as a means of aiding

maintenance by localizing the impacts of change. Further,

these identified modules are potential reuse candidates.
In this paper, we are concerned with functional abstrac-

tions through aggregation based upon the calling structure

of a piece of code. To restrict the discussion to a manageable

length, we thus consider only persistent data such as files or

tables and regard the program as consisting of a database,

D, and a collection of procedures which may be called and

which operate on the database. The database is viewed as

encoding the state of the program. We shall expand upon

this description in Section 3. The separate modules we

discuss are coarse-grained persistent objects as opposed to

fine-grained volatile objects. As Cimitile et al. [11] point out,

this is more appropriate when considering potential reuse;

they also provide a good review of work on fine-grained

volatile objects.
The potential reuse candidates are obtained from

subtrees on the dominance tree, an abstraction of the calling

structure. Various authors [6], [7], [9], [10], [11], [12] have

worked on the identification of potential reuse candidates

from the dominance tree and, in Section 2, we review the

techniques. Müller et al. ([23]) have also worked on the

identification of reuse candidates. Canfora et al. ([8]) talk of

the balance between “the ability to simply partition a legacy

system into objects versus the ability to abstract an

architecture (i.e., relations between objects).” In the exam-

ples in Section 2, we highlight some limitations of the

dominance tree in its failure to both develop an architecture

and, in certain simple cases, failure to highlight potential

reuse candidates. In Section 3, we introduce an alternative

relation on the call graph, that of generalized conditional

independence (g.c.i.). In Section 4, we show how the

adoption of the g.c.i. relation gives a formal underpinning

for the selection of reuse candidates from a modified form

of the dominance tree. The theory is illustrated by a series of

simple examples.

2 PROGRAM COMPREHENSION USING

DOMINANCE TREES

In this section, we review current approaches to program

comprehension using the dominance tree derived from the

call graph. Through a series of examples, we illustrate the

methodology and suggest a number of potential problems

with the current practice. In Sections 3 and 4, we introduce a

formal approach, based around the g.c.i. relation, to address

these problems.
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2.1 The Call Graph

The call structure of a piece of code provides a high-level

description of the flow of the program. This structure

describes the procedural units and the relationships

between them. Examples of procedural units are functions

in the language C, paragraphs in COBOL, and methods in

Java. In this paper, we use the generic term “procedure”

and the relationships between procedures are termed

“calls.” No attempt is made to introduce other relationships

that may, for example, enable data flow analysis. The

calling structure may be visualized by presenting it as a

graph. We follow the notation and terminology of Lauritzen

[20] so that a graph is a pair G ¼ ðV ;EÞ, where V is a finite

set of vertices and E is the set of edges, a subset of V � V

the set of ordered pairs of distinct vertices. An edge ðf; gÞ 2
E is directed, denoted f ! g, if ðf; gÞ 2 E ^ ðg; fÞ =2 E. We

term f a parent of g and g a child of f . The full collection of

parents of g are denoted by paGðgÞ while chGðfÞ denotes the
full collection of children of f . An edge ðf; gÞ 2 E is

undirected, denoted f � g, if ðf; gÞ 2 E ^ ðg; fÞ 2 E. If

ðf; gÞ =2 E, we write f 6! g and if ðf; gÞ =2 E ^ ðg; fÞ =2 E, we

write f 6� g. If all edges on the graph are directed then the

graph is said to be directed, whereas it is undirected if all

edges are undirected. A path of length n from f to g is a

sequence f ¼ f0, f1; . . . ; fn ¼ g such that ðfi�1; fiÞ 2 E 8i
¼ 1; . . . ; n. We write f 7! g. If both f 7! g and g 7! f , then f

and g are said to connect and we write f Ð g. If either f 7! g

or g 7! f , we state that there is a direct path between f and

g. There is an undirected path between f and g if there is a

sequence f ¼ f0, f1; . . . ; fn ¼ g such that either ðfi�1; fiÞ 2 E

or ðfi; fi�1Þ 2 E for all i ¼ 1; . . . ; n. A directed graph is

weakly connected if there is an undirected path between

any pair of vertices and strongly connected if there is a

directed path between every pair of vertices. If f 7! g and

g 67!f , then f is an ancestor of g and g a descendent of f . The

complete collection of ancestors of g are denoted by anGðgÞ
while the complete collection of descendents of f are

denoted by deGðfÞ. An n-cycle is a path of length n from f to

itself. If the graph G contains no cycles, then it is said to be

acyclic. An acyclic connected undirected graph is termed a

tree; a rooted tree is a directed acyclic graph (DAG)

obtained from a tree by choosing a vertex as a root and

directing all edges away from this vertex. For VS � V , we

may obtain the subgraph GS ¼ ðVS; ESÞ, where ES is

obtained from G by keeping the edges with both endpoints

in VS . A cycle thus generates a strongly connected

subgraph.

Definition 1. A call graph is a directed graph, GC ¼ ðVC;ECÞ.
The finite set of vertices, VC , consists of the procedures which
are either called or call other procedures in the program. For
any two procedures f , g 2 V if there is a call to g by f , then the
edge ðf; gÞ appears on the graph. The complete collection of
edges is denoted by EC .

Some languages permit direct or indirect recursion and

so the call graph may be cyclical. As Cimitile and Visaggio

[12] highlight, “the existence of recursions among proce-

dures is in fact indicative of the implementation of a

functionality through a recursive algorithm” and suggest

that two or more procedures in such a recursive call

relationship exhibit a high level of coupling and may be

considered as a single module. By collapsing every strongly

connected subgraph into a single vertex, we may convert

the call graph into a DAG. This remodularization will also

simplify the visualization by reducing the number of

vertices and edges without damaging the architecture of

the system, as calls from and to the procedures in the cycle

are maintained on the modified call graph. We proceed by

assuming that such a remodularization has been performed

on the call graphs we consider, so that we deal only with

DAGs. Notice that, by virtue of containing no cycles, DAGs

must have at least one vertex that has no parents: If G ¼
ðV ;EÞ is a DAG, then there exists f 2 V such that for all

g 2 V ; ðg; fÞ =2 E. Thus, in terms of the call graph, f is a

procedure which is not called by any other procedure. Such

procedures are often called entry points; in this paper, we

term them root nodes.

Fig. 1a shows an example of a very simple call graph; it

has a single root node A000. It is straightforward to

understand the calling structure of the program. For

example, once D000 has been called, the execution of the

program exists purely in the collection D� ¼ fD000; D100;

D200; D110g until D000 is exited. Similarly, once B000 has

been called, execution exists purely in the collection B� ¼
fB000; B100; B200g until B000 is exited. Notice that,

following a call to C000, execution does not exist purely

in the collection C� ¼ fC000; C100; C200; C110g since C000

calls B000 and, so, execution may switch to B�. However,

execution cannot switch to D�. Observe that, by removing

the procedure A000 and the three calls it makes from the

call graph, we are left with a subgraph that consists of two

disconnected subgraphs, B� [ C� and D�. Intuitively, it

seems that B� and D� can be considered as reuse candidates

with D� being accessed by A000 and B� by A000 and C000.

A more formal approach is required to both strengthen the

intuitive argument for this example and to handle call

graphs with many thousands of procedures and calls. The

most familiar approach is to make a further abstraction of

the call structure by converting the call graph into a rooted

tree using the dominance relation; the rooted tree is termed

the dominance tree.

2.2 The Dominance Tree

The dominance tree aims to assist program comprehension
by reducing information overload during the early stages
of comprehension and by identifying collections of proce-
dures which may be remodularized into single modules.
The dominance tree is a rooted tree whose root is a root
node of the call graph GC ¼ ðVC;ECÞ and is constructed
using the relations of direct dominance and strong direct
dominance, [17].

Definition 2. If f 2 VC is a root node of the call graph GC and
deCðfÞ the descendents of f on GC , then we construct the
subgraph GCf

¼ ðf�; ECf
Þ, where f� ¼ ffg [ deCðfÞ. For

procedures g; h 2 f�, g dominates h on GCf
if and only if

every path f 7! h on GCf
intersects g. We say that g directly
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dominates h on GCf
if and only if all procedures that dominate

h on GCf
dominate g on GCf

. g strongly directly dominates h
on GCf

if and only if g directly dominates h on GCf
and is the

only procedure in f� that calls h.

The root node, f , trivially dominates all procedures h 2
deCðfÞ and the direct dominance relation identifies, for each
h, a single procedure from the collection of dominators of h.

Definition 3. The dominance tree corresponding to a root node, f ,

is the graph GDf
¼ ðf�; EDf

Þ formed from GCf
¼ ðf�; ECf

Þ, the
subgraph of the call graph GC¼ ðVC;ECÞ, where f� ¼ ffg
[ deCðfÞ and EDf

¼fðg; hÞ8g; h 2 f� : g directly dominates

h on GCf
g. The vertex h is shaded if g only directly dominates h

on GCf
.

Each root node of GC ¼ ðVC;ECÞ will generate its own

dominance tree. If GC has a single root node, f , then f� ¼ VC

and GCf
¼ GC and we denote the dominance tree by

GD ¼ ðVC;EDÞ. The call graph in Fig. 1a has a single root

node and the sole corresponding dominance tree, GD, is

shown in Fig. 1c. Vertices which are not strongly directly

dominated are shaded. For example, D000 strongly directly

dominates D100, while D110 is only directly dominated by

D000. Procedures that are only directly dominated have

become disinherited from some, possibly all, of the

procedures which called them: They had at least two

calling vertices and may not be directly dominated by any

of them. In Fig. 1c, D110 is directly dominated by D000, but

D000 does not call D110 in Fig. 1a. Thus, ED 6� EC : The

dominance tree is not merely the call graph with some

edges removed. Procedures which are only directly

dominated indicate a more complex relationship in the call

graph than that shown on the dominance tree and so

information is lost in the abstraction from the call graph to

the dominance tree at the shaded vertices. Intuitively, the

greater the proportion of shaded vertices, the more

problematic program comprehension may be from the

dominance tree.

One benefit of the dominance tree to program compre-

hension is that it reduces the complexity of the visualization

of the call graph and the layout is straightforward. In

commercial applications, see, for example [6], procedures

have been found to call or be called by over 100 procedures

and so a reduction to a single edge on the dominance tree

greatly increases the readability of the graphic. It is with

such large complex problems in mind that, in Definition 3,

we follow the convention of, for example, [2], [3], [4], [5] in

distinguishing between strong direct dominance and direct

dominance by vertex shading as opposed to the dashed and

solid edged approach adopted in, for example, [9], [12], [11],

as this improves the visual representation. As an illustration
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Fig. 1. (a) A simple call graph. Procedure A000 calls procedures B000, C000, and D000. Procedure C000 calls procedures B000, C100, and C200,

and so on. (b) A second simple call graph. (c) The dominance tree corresponding to both the call graph in (a) and that in (b). (d) The moral

dominance tree resulting from the call graph of (a). (e) The moral dominance tree resulting from the call graph of (b).



of this, the dominance tree in Fig. 2 of [2] contains 230

procedures and it is easy to identify whether subtrees

within the dominance tree contain shaded vertices whereas

the scale would make it hard to distinguish between dashed

and solid edges.
In addition to visualization, dominance trees have been

used to identify potential reuse candidates within the code

which may then be reengineered into separate modules.

This modularization helps make the code more flexible

and maintainable. Burd and Munro [4] write that “the

directly dominates and strongly directly dominates rela-

tions define where remodularization can occur. For

instance, where directly dominates relations are identified,

this means that calls are made to other vertices within the

branch of the tree.” For example, on the dominance tree in

Fig. 1c, C110 is only directly dominated which indicates

that it must be called by at least one of C100 or C200. We

do not know whether C000 calls it. From the call graph in

Fig. 1a, we can confirm that both C100 and C200 call C110

and C000 does not.

2.3 “Single Call In” and “Multiple Calls In” Subtrees

For a dominance tree GDf
and any procedure h 2 VDf

, we
are interested in the subtree consisting of the collection of
procedures h� ¼ fhg [ deDf

ðhÞ, the procedure h and all of its
descendents on GDf

. The dominance relation means that the
only calls from VDf

n h� to h� on the call graph GC are to h
itself. If h is strongly directly dominated by g 2 VDf

n h�,
then this is the only call to h from the procedures in VDf

n h�

on the call graph and this call may be deduced from GDf
;

GDf
illustrates how h� is accessed by the other procedures,

VDf
n h�. Consequently, we introduce the term “single call

in” subtree to describe h�.

If, however, h is only directly dominated by g 2 VDf
n h�,

then the limit of the information given by the dominance

tree is that we only know there is a call from at least one

procedure, ~gg 2 deDf
ðgÞ n h�, to h on the call graph. We do

not know whether g itself calls h or indeed how many such

~gg there are. In this case, we introduce the term “multiple

calls in” subtree to describe h�. “Multiple calls in” subtrees

lead to a lack of uniqueness of the dominance tree: Different

call graphs lead to the same dominance tree. For example,

the same tree is produced by setting paCf
ðhÞ ¼ g� n h� rather

than the actuality of paCf
ðhÞ � g� n h�. The lack of unique-

ness becomes more apparent the larger g� n h� is. Without

recourse to the call graph, this could lead to difficulties in

identifying reuse candidates and assessing the impact of

change by mapping ripple effects, the changes that become

necessary to make due to maintenance on another part of

the code.

As an illustration, consider the call graph in Fig. 1b. The

corresponding dominance tree is identical to the dominance

tree for the call graph in Fig. 1a. B000 is only directly

dominated by A000 and, so, any call graph corresponding to

the dominance tree in Fig. 1c must contain at least one call

from C000�[D000� to B000. For the call graph in Fig. 1a,

there is a solitary procedure, C000 2 C000� [D000�, while,

in the call graph in Fig. 1b, there are two procedures, C110

and D110, in C000� [D000� which call B000. Notice that

A000 does not call B000 on the call graph in Fig. 1b. The two

call graphs have very different structure; in particular, notice

that for the call graph in Fig. 1b, B000� is contained in the set

of descendents for every other procedure and, so, a change to

B000 could ripple through all of C000� and D000�. Even for

these very simple examples, a comprehension based purely

on the shared dominance tree in Fig. 1c will fail to capture the

differences between the two call graphs.
Current practice is to use the subtrees which we term

“single call in” subtrees as the basis for identifying potential
reuse candidates. Consider a dominance tree, GDf

, where
the procedure g strongly directly dominates procedures
h1; . . . ; hn and [n

i¼1 ¼ chDf
ðgÞ, the children of g on GDf

. Burd
and Munro [3] identify the individual subtrees h�

i for each
i ¼ 1; . . . ; n as potential reuse candidates. There are no calls
between the h�

i on the call graph GC . Once execution enters
h�
i , it cannot switch to any other procedure ~gg =2 h�

i until hi is
exited. If, however, there exists a procedure hnþ1 such that
hnþ1 is only directly dominated by g on GDf

, then there is at
least one h�

j such that execution can switch from h�
j to h�

nþ1.
This is the case with the dominance tree in Fig. 1c. C000�,
D000� are “single call in” subtrees strongly directly
dominated by A000. Execution cannot switch between
C000� and D000�. However, B000� is a “multiple calls in”
subtree directly dominated by A000 and, so, execution
could switch from either C000� to B000� or from D000� to
B000�. For the call graph in Fig. 1a, it is C000� to B000�

while, for that in Fig. 1b, it is both C000� to B000� andD000�

to B000�. For the call graph in Fig. 1a, see Section 2.1, we
might suggest the reuse candidates to be B000� [ C000� and
D000� with B000� a separate module within the module
B000� [ C000�. This isolation is not apparent on the
dominance tree. For the call graph in Fig. 1b, we might
argue that B000� was a separate module used by the
modules C000� and D000�. While the dominance tree,
Fig. 1c, identifies that, for both call graphs (in Figs. 1a and
1b), execution cannot switch between C000� and D000�,
there is no automated way we can link these collections
correctly with B000�: The relationship differs in the two call
graphs. As Burd and Munro [4] point out, “this represents a
failure to properly isolate candidates at an appropriate level
of granularity.” In addition to the relationship between
“single call in” branches and “multiple calls in” branches,
differing relations between the “single call in” branches are
not visible on the call graph. For example, consider the
“single call in” branches C000� and D000� on the
dominance tree in Fig. 1c. C000 and D000 have no shared
descendents on the call graph in Fig. 1a, while for that in
Fig. 1b, the set B000� is contained in the set of descendents
of both C000 and D000. We would like a means of
recognising whether, and how, the branches on the
dominance tree are related.

2.4 Further Problems with Dominance Trees

The problem of multiple root nodes. The dominance

relation is determined from a specific root node of the call

graph. When a call graph has multiple root nodes, multiple

dominance trees must be generated and the same proce-

dures may appear on different dominance trees. Burd and

Munro [4, Section 4] found this problem in case studies of
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C code. They write that “within the case studies, the largest

number of dominance trees identified from a single code

file was 41 ... The fact that multiple dominance trees are

generated can be problematic if procedures are shared

between individual dominance trees. In all cases identified

through the case study, this was found to be the case.” It is

not clear how to assess the relationship between multiple

dominance trees.

Failure to capture potential reuse candidates. Consider

the call graph inFig. 2a. Its structure is similar to that of Fig. 1b

and we could argue that the collections C� ¼ fC001; C000;

C100; C200; C110g andD�¼fD001; D000; D100; D200; D110g
form two separate modules which access the module

B� ¼ fB000; B100; B200g. The corresponding dominance

tree is shown in Fig. 2b. Only B� appears as a subtree on

the dominance tree while both C� and D� collapse: Of the

10 procedures in C� [D�, only four are strongly directly

dominated. Excluding A000�, the “single call in” subtrees all

contain a single procedure. For this example, the dominance

tree provides a poor representation of the call graph and is

not helpful for program comprehension.

The dominance relation, see Definition 2, may be viewed

as a graph separation property. For a graph G ¼ ðV ;EÞ, a
subset G � V is said to be an ðf; hÞ-separator if all paths

from f to g intersect G. Thus, for a directed graph, for each

path f 7! h, there exists g 2 G such that f 2 anGðgÞ and

h 2 deGðgÞ. If F , G, and H are nonoverlapping subsets of V ,

then G is said to separate F from H if G is an
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Fig. 2. (a) A third call graph. (b) The corresponding dominance tree. (c) The modified call graph obtained by merging vertices in the cliques on the call

graph in (a). (d) The moral dominance tree corresponding to the modified call graph.



ðf; hÞ-separator for every f 2 F , h 2 H. Thus, g dominates h

on GCf
if and only if g separates f from h on GCf

, that is, g is

an ðf; hÞ-separator. The separation property may be applied

to any three collections of vertices whereas the dominance

relation applies to only three vertices, one of which is a root

node and, in particular, only a single vertex is considered

for the separator set. For the call graph in Fig. 2a, it is this

search for a single vertex that causes the collections C�, D�

to collapse for A000 is separated from fC100; C200; C110g
by fC001; C000g, while fD001; D000g separates A000 from

fC100; C200; C110g. By considering separations of indivi-

dual vertices rather than collections of vertices on the

original call graph, we may fail to identify potential reuse

candidates and comprehend the calling structure. Indeed,

by lifting the restriction of graph separation away from a

root node, we can identify the differences between the call

graphs in Figs. 1a and 1b. In the former, C000� and D000�

are separated by the empty set; in the latter, C000� and

D000� are separated by B000. This discussion suggests that

an approach based upon more general graph separations

rather than the dominance relation will be a more fruitful

approach to program comprehension and we now develop

such an approach.

3 g.c.i. REPRESENTATIONS FOR

THE CALLING STRUCTURE

In this section, we show how we can formalize the

relationship between any collection of procedures on the

call graph. To achieve this, we use the calculus of g.c.i.

properties, a relation on triples of uncertain quantities, W ,

X, Y , which identifies whether given information on W ,

information on X has a bearing on the uncertainty about Y .

3.1 Procedures and Uncertainty in
the Calling Structure

For simplicity of exposition, we regard a piece of code as

consisting of a database, D, which encodes the state of the

program (for example, the variables), and a collection of

procedures which may be called and which operate on the

database. Having been called, each procedure is viewed as

processing an input in order to perform an action. Upon

completion of the action, control of the program returns to

the procedure which made the call. For example, the action

may be to read an item in the database or to write to the

database. The result of the action is, thus, dependent upon

the state of the database immediately prior to the call

being made.
To formalize this, let GC ¼ ðVC;ECÞ be a call graph with

g, h 2 VC . Suppose a call is made to h by g with input a and

that, immediately prior to this call, the state of the database

is Da. The expected outcome, having processed the input, is

that the result of the action is hDa
ðaÞ and the state of the

database is DhðaÞ. However, we actually observe ~hhDa
ðaÞ and

D ~hhðaÞ. There is uncertainty as to whether the procedure

has performed the action correctly, that is, whether
~hhDa

ðaÞ ¼ hDa
ðaÞ, and also whether the database has been

left in the desired state, that is, whether D ~hhðaÞ ¼ DhðaÞ.

Definition 4. The procedure h is said to work for input a if, for
all possible database states, Da, we have ~hhDa

ðaÞ ¼ hDa
ðaÞ and

D ~hhðaÞ ¼ DhðaÞ. If the two conditions do not both hold, then the
procedure h is said to be in error for a.

The error is specific to the procedure; the procedure

should be able to cope with any given state of the database

and any given input. For instance, if a procedure fails to

leave the database in the desired state, a later procedure

accessing the database will not be in error if it can handle

this error. As an example, suppose a piece of code operates

an accounts system for a bank. Procedure h has the function

of adding a given amount, x, to a specific account y (so the

input is a ¼ ðx; yÞ). It does this by adding x to every

account. h performs its action correctly but does not leave

the database in the desired state. h is in error for a. If

procedure i is now called to read the amount in account z,

although the incorrect amount is present in z, iwill not be in

error if it correctly reads the amount present (and leaves the

database unchanged).

Definition 5. The procedure h is said to work if it works for each
input a 2 A, where A is the set of possible inputs. If there is an
input a such that the procedure h is in error for a, then the
procedure is said to not work.

Definition 5 allows us to consider the potential propaga-

tion of errors. Suppose that GC ¼ ðVC;ECÞ is a call graph

with f , g, h 2 VC and ðf; gÞ, ðg; hÞ 2 EC . Suppose g is called

by f with input ~aa and that, in order to process this action, g

calls h with input a. If h is in error for a, then an error is

present when control is returned to g and, thus, when

control returns from g to f : g is in error for ~aa. The error has

propagated from h to g and then to f (as the return from f

will contain an error). The dependence on the database state

immediately prior to the call being made (see Definition 4)

means that the only way for errors to propagate is in the

reverse order to calls on the call graph. In general, the error

may only propagate from, on the call graph, child to parent:

It depends upon whether the parent calls the child with an

input for which the child is in error. This propagation of

errors, in the reverse order to the calls, leads us to make the

following definition.

Definition 6. For a call graph GC ¼ ðVC;ECÞ with g, h 2 VC , we
construct the error propagation graph ~GGC ¼ ðVC;ERÞ, where
ER ¼ fðh; gÞ : ðg; hÞ 2 ECg.

~GGC is thus the call graph with the edges reversed and it

maps the potential propagation of errors, as defined by

Definition 5. Notice that, while we talk here about error

propagation, we are interested in actions where a change in

the child on the call graph could cause a change in the

parent. We view ripple effects as being such an action. Each

procedure may be viewed as a random quantity having two

possible states: 1 if the procedure works and 0 if the

procedure does not work.

Viewing the procedures in this way enables us to

formalize a relationship between the procedures. We may

consider whether learning the state of a given procedure is
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informative about the state of another procedure of interest.

This may help us distinguish between call graphs where the

dominance tree fails to detect a difference. Consider the call

graphs in Figs. 1a and 1b and suppose that we learn that

C000 does not work. In both call graphs, this could have

been caused by an error propagating from B000 and, so, we

would now believe the chance of B000 not working to be

greater than before. There is a relationship between B000

and C000 in both cases, but this is not shown on the

dominance tree, Fig. 1c. In Fig. 1b, an error in B000 could

propagate to D� ¼ fD000; D100; D200; D110g and, so, learn-

ing about C000 influences D�. However, in Fig. 1a, this is

not the case. Notice that, if we already knew the state of

B000 for the call graph in Fig. 1b, say that it worked, then

learning that C000 does not work no longer provides any

information about D� as we know the error in C000 has not

propagated from B000. Knowledge of the state of B000

separates the uncertainty, in terms of whether the proce-

dures are working, between C000 and D�. We may

represent such separations using the concept of g.c.i., as

we now explain.

3.2 Generalized Conditional Independence Property

Smith [25], [26] defined a tertiary relation, ð�??�Þj � , on all
triples W , X, Y of uncertain quantities, that is quantities
whose state is currently unknown to us, as follows:

Definition 7. Any tertiary relation ð�??�Þj � satisfying the
following three properties:

1: ðW??XÞjX [ Y ; ð1Þ
2: ðW??XÞjY if and only if ðX??W ÞjY ; ð2Þ

3: ðW??X [ Y ÞjZ if and only if
ðW??Y ÞjZ;
ðW??XÞjY [ Z;

�
ð3Þ

for any collections W , X, Y , Z of uncertain quantities is
termed a generalized conditional independence (g.c.i.) prop-
erty. ðW??XÞjY is read as “W is independent of X given Y .”

Equation (1) is that “once X is known (along with

anything else Y ), then no further information can be gained

about X by observing W .” Equation (2) is the symmetry

relation: “If once Y is known, W is uninformative for X,

then X is uninformative for W , having observed Y .”

Equation (3) is “if having observed Z, W is uninformative

for both X and Y , then equivalently, having observed Z, W

is uninformative about Y and, having observed Y and Z, W

conveys no information about X.” W??X is a shorthand for

ðW??XÞj;, where ; is the empty set.

The most familiar g.c.i. property is when the collections

represent random quantities and ð�??�Þj � is taken to be

probabilistic conditional independence. For random vectors

X, Y , Z, we say that X is probabilistically conditionally

independent of Y given Z, written ðX??Y ÞjZ, if pðx; yjzÞ ¼
pðxjzÞpðyjzÞ, or equivalently if pðxjy; zÞ ¼ pðxjzÞ, where pð�Þ
denotes the probability density function; if Z ¼ ;, then we

say that X and Y are probabilistically independent. Dawid

[14], [15] developed probabilistic conditional independence

as a basic intuitive concept with its own axioms. The work

of Smith is a generalization of this to other inference

systems which do not require full probability specifications.

For example, Goldstein [16] constructs a tertiary property

satisfying properties (1), (2), and (3) based on the partial

quantitative specification of beliefs. Smith [25] writes that

“in a Bayesian statistical or decision analysis it is common

to be told that, given certain information W , a variable X

will have no bearing on another Y . It is often quite easy to

ascertain this type of information from a client for various

combinations of variables. Such information can be gath-

ered before it is necessary to quantify subjective probabil-

ities which, in contrast, are often very difficult to elicit with

any degree of accuracy.” Pearl [24] agrees, arguing that “the

notions of relevance and dependence are far more basic to

human reasoning than the numerical values attached to

probability judgements.” By asserting properties (1), (2),

and (3), the g.c.i. relation may be applied qualitatively

without the need for explicit numerical specifications. The

easiest way to do this is to represent the g.c.i. relation

graphically using a directed graph as we now explain.

3.3 Belief Separation via the Moral Graph

A collection of g.c.i. relations may be represented graphi-

cally. The vertices of the graph are random quantities;

vertices are joined by directed arrows if there is a possible

direct dependency between them.

Definition 8. A DAG, G ¼ ðV ;EÞ, is a directed graphical model
(DGM) if, for any Xi 2 V and any Xj =2 deGðXiÞ, the
descendents of Xi on G, we have

ðXi??XjÞjpaGðXiÞ; ð4Þ

where ð�??�Þj � is a g.c.i. property and paGðXiÞ denotes the set
of parents of Xi on G.

There are a number of equivalent definitions of a DGM,

for example, see Theorem 5.14 of [13]. The most familiar

type of DGM, the Bayesian graphical model (BGM), occurs

when ð�??�Þj � represents probabilistic conditional indepen-

dence. [29] introduces BGMs into the problem of software

testing, while [1] show how fault trees can be mapped into

BGMs.

Definition 8 shows that a DGM may be formed by the

explicit statement of the parent sets for each vertex.

However, the given g.c.i. statements are not the sole g.c.i.

statements in the model because we may use properties (1),

(2), and (3) to determine further g.c.i. statements. Indeed, to

fully understand the g.c.i. structure of the model, we would

like to be able to ask whether, for any three subsets W1, W2,

W3 � V on the DGM, we have ðW1??W2ÞjW3. The answer

lies by linking g.c.i. with graph separation on an associated

undirected graph; graph separation satisfies properties (1),

(2), and (3) (see Pearl [24, Section 3.1]) and so itself acts as a

g.c.i. property. The required graph is the moral graph

associated with W1, W2, W3 as introduced by Lauritzen and

Spiegelhalter [22].

Definition 9. For the DAG G ¼ ðV ;EÞ and any three subsets
W1, W2, W3 � V , the moral graph associated with W1, W2,
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W3 is the undirected graph GMð[3
i¼1WiÞ ¼ ðVMð[3

i¼1WiÞ,
EMð[3

i¼1WiÞÞ, where

VMð[3
i¼1WiÞ ¼ [3

i¼1fWi [ anGðWiÞg;
EMð[3

i¼1WiÞ ¼ fff � g8f; g 2 VMð[3
i¼1WiÞ : ðf; gÞ 2 Eg

[ ff � h8f; g; h 2 VMð[3
i¼1WiÞ : fðf; gÞ; ðh; gÞg

� E ^ ðf; hÞ; ðh; fÞ =2 Egg;

and anGðWiÞ denotes the collection of ancestors of Wi on G. If
VMð[3

i¼1WiÞ ¼ V , then we write GMð[3
i¼1WiÞ ¼ GM and term

this the full moral graph.

Less formally, we construct the subgraph of G whose

vertices are W1, W2, W3 and all of their ancestors. For each

individual vertex of the subgraph, we “marry” all of its

parents (join them with an edge if not already joined) and

then drop all arrows to form the moral graph GMð[3
i¼1WiÞ.

Since all the parents are “married,” Lauritzen and Spiegel-

halter [22] coined the term moral graph. The following

theorem, see [21], [27], shows that it is straightforward to

use GMð[3
i¼1WiÞ to determine whether ðW1??W2ÞjW3 on G.

Theorem 1. For any three subsets W1, W2, W3 � V on a DGM,
G ¼ ðV ;EÞ, we have ðW1??W2ÞjW3 whenever W1 and W2 are
separated by W3 on GMð[3

i¼1WiÞ, the moral graph associated
with W1, W2, W3.

Theorem 1 is often termed the moralization criterion. An

alternative process to establish whether any three subsets

W1, W2, W3 satisfy ðW1??W2ÞjW3 on a DGM, using the

concept of d-separation on the original DGM, was devel-

oped by Pearl [24]. Lauritzen et al. [21] shows this approach

is equivalent to Theorem 1. The aim of Pearl [24, p. 81] as to

“whether assertions equivalent to those made about

probabilistic dependencies can be derived logically without

reference to numerical quantities,” may be met using

Theorem 1. If W1 and W2 are separated by W3 on

GMð[3
i¼1WiÞ, then they are separated by any g.c.i. property

that quantifies the network, for example, probabilistic

conditional independence. For a collection of quantities of

interest, V , we may assert a DGM over V and identify the

independence structure of the model via Theorem 1. If we

then wish to specify a full probability distribution over V ,

any distribution satisfying (4) will have the same indepen-

dence structure irrespective of the actual numerical speci-

fications. Such distributions are easy to find: If (4) is to hold,

then the joint distribution over all the random quantities in

V has the form pðx1; . . . ; xnÞ ¼
Qn

i¼1 pðxijpaGðxiÞÞ (see, for

example, Jensen [19, p. 20]).

3.4 Using the Call Graph to Create a DGM

In this section, we shall argue that the error propagation

graph, see Definition 6, may be viewed as a DGM. First, we

remark that the call graph, with the procedures viewed as

the random quantities expressing whether the procedure

works or not, does not constitute a DGM. Consider the call

graph with vertices f , g, h and edges ðf; gÞ and ðf; hÞ.
Suppose that f is known not to be working. This could have

resulted from an error propagating from either g or h or

from an error in f itself. If we now learn that g works, then

this will increase the belief that h is in error; procedures g

and h are dependent given f . This violates property (4)

which requires ðg??hÞjf .
We now argue that property (4) is met on the error

propagation graph. We consider vertices g; h 2 VC and show

that ðg??hÞjpa~GGC
ðgÞ whenever h =2 de~GGC

ðgÞ. From (1), this is

immediate if h 2 pa~GGC
ðgÞ. Consider h 2 an~GGC

ðgÞ n pa~GGC
ðgÞ. h

and g are dependent: An error in h can propagate from h to

g. Any path h 7! g on ~GGC must intersect some ~gg 2 pa~GGC
ðgÞ. If

the state of each ~gg is known, then knowledge of the state of h

is uninformative for g. For example, if each ~gg is observed to

work and we now observe that h is in error, then this gives

us no new information: We already know from the state of ~gg

that the error does not propagate to pa~GGC
ðgÞ and, hence,

cannot propagate to g.

We now restrict h to the collection VC n ffgg [ an~GGC
ðgÞ [

de~GGC
ðgÞg and let A ¼ an~GGC

ðgÞ \ an~GGC
ðhÞ. If A ¼ ;, then g and

h are independent. For example, learning that h does not

work increases our belief that errors are contained in

an~GGC
ðhÞ, but errors in an~GGC

ðhÞ cannot propagate to g. Note

that, letting B ¼ de~GGC
ðgÞ \ de~GGC

ðhÞ, we may have B 6¼ ;.
Consider some ~gg 2 B. Learning about h is informative about

~gg, but this does not influence g as although a potential error

in h could result in ~gg calling g with the wrong input, or with

the wrong database configuration, all that is relevant is

whether g copes with these correctly. If pa~GGC
ðgÞ is now

known, g and h remain independent since, as A ¼ ;,
an~GGC

ðpa~GGC
ðgÞÞ \ an~GGC

ðhÞ ¼ ;.
If A 6¼ ;, then g and h are dependent. For example, if we

learn that h does not work, then this error could have

propagated from procedures contained in A, increasing our

belief for the procedures in A not working. Errors in A may

also propagate to g increasing our belief in g not working.

The dependence is via the collection A � an~GGC
ðgÞ. Arguing

similarly to when g 2 an~GGC
ðgÞ shows that, if pa~GGC

ðgÞ is

known, information about A is irrelevant to g and tracing

the passage of knowledge from h to g we see that

knowledge about h is now irrelevant to g. This discussion

is summarized as follows:

Lemma 1. The error propagation graph ~GGC ¼ ðVC;ERÞ is a

DGM. If G, H, F are three sets of procedures on G and F

separates G from H on ~GGMðG;H; F Þ, then ðG??HÞjF .

We term ~GGMðG;H; F Þ the associated moral graph to the

call graph for collections G;H; F . For the call graph in

Fig. 1a, the associated moral graph ~GGMðVC nA000Þ is

obtained by deleting A000 and the three calls it makes in

Fig. 1a, adding the edges B100 � B200 (as they are

unmarried parents of B000 on the error propagation graph)

and C100 � C200 and then dropping all arrows. As was

intimated in Section 2.1, B� [ C� are separated from D� by

the empty set and, so, B� [ C�??D�. We now explore the

g.c.i. properties of the error propagation graph to strength-

en our analysis of the dominance tree.
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4 PROGRAM COMPREHENSION USING

THE g.c.i. RELATION

4.1 Strongly Directly Dominated Subtrees:
“Single Call In”

In Section 2, we reviewed current practice in using the

dominance tree to select potential reuse candidates. “Single

Call In” subtrees, that is, subtrees whose root was strongly

directly dominated, have been identified as possible sites of

remodularization. In this section, we formalize the relation-

ship between “single call in” subtrees which share a

common strongly direct dominator. This enables us to

strengthen the argument for the adoption of the reuse

candidates, while also helping to explain the relationship of

the candidates with the directly dominated vertices. The

approach utilizes the g.c.i. relation discussed in Section 3.

We have the following theorem; the proof is in the

Appendix.

Theorem 2. Suppose GC ¼ ðVC;ECÞ is a call graph and consider

any collection of vertices h1; h2; . . . ; hm with the property that,

for any hi 6¼ hj, there is no direct path between hi and hj

on GC . Let H ¼ [l
k¼1fdeCðhiÞ \ deCðhjkÞg. For any i 2

f1; . . . ;mg and any 1 � l � m, 1 � j1 � j2 � � � � � jl � m,

jk 6¼ i, with h� ¼ fhg [ deCðhÞ for any h 2 VC ,

ðh�
i?? [l

k¼1 h
�
jk
ÞjH: ð5Þ

If two vertices are both strongly directly dominated by
the same vertex on a dominance tree, then there is no path
between them on a call graph. Moreover, with h� ¼
fhg [ deDf

ðhÞ, h� � h� and, so, we may link Theorem 2 to
the reuse candidates generated by the “single call in”
subtrees on a dominance tree GDf

via the following
corollary.

Corollary 1. Suppose GC ¼ ðVC;ECÞ is a call graph and f is a

root node of GC . Additionally, consider a vertex g on GDf
which

strongly directly dominates the vertices h1; . . .hm on GCf
. Let

H ¼ [l
k¼1fdeCðhiÞ \ deCðhjkÞg. For any i 2 f1; . . . ;mg and

any 1 � l � m, 1 � j1 � j2 � � � � � jl � m, jk 6¼ i, with

h� ¼ fhg [ deDf
ðhÞ for any h 2 VDf

,

ðh�
i?? [l

k¼1 h
�
jk
ÞjH: ð6Þ

Proof. Since h�
i n hi forms the set of vertices dominated by hi

on GDf
, then fh�

i n hig � deCðhiÞ. The reduction of the sets
h�
i to h�

i follows by the g.c.i. property (3). tu

Corollary 1 thus provides us with the relationship

between “single call in” subtrees whose roots share the

same parent on the dominance tree. The subtrees are

independent if they do not share any descendents on the

call graph, so that H ¼ ;, and conditionally independent if

they do share descendents, that is H 6¼ ;. These shared

descendents are thus present in “multiple calls in”

subtrees on the dominance tree and, so, provide a

connection between “single call in” and “multiple calls

in” subtrees. Consider the dominance tree in Fig. 1c and

the “single call in” subtrees C000� and D000�. In the call

graph in Fig. 1a, C000 and D000 do not share descendents

and so, from Corollary 1, we have C000�??D000�. How-

ever, for the call graph in Fig. 1b, C000 and D000 do share

descendents: B000�. In this case, applying Corollary 1

yields ðC000�??D000�ÞjB000�. The difference in these two

statements illustrates an advantage of the g.c.i. relation

over the dominance relation and helps explain why we can

capture the relationship between subtrees on the dom-

inance tree. The dominance relation is only concerned with

calls to a procedure while the g.c.i. relation also takes

account of calls made by a procedure. This difference is

crucial if one wishes to examine ripple effects as Figs. 1a

and 1b illustrate.

4.2 Relations around “Isolated” Subtrees

Theorem 2 and, thus, Corollary 1 stress the importance of

shared descendents of “single call in” subtrees. For the

call graph in Fig. 1a, since C000� ¼ B000� [ C000� and

D000� ¼ D000�, then, from Theorem 2, B000� [ C000�??
D000�. In this case, D000 dominates all of its descendents

and, hence, does not call any other subtree on the

dominance tree.

If, for any hu 2 VDf
, we have deCðhuÞ ¼ deDf

ðhuÞ, then the

subtree h�
u ¼ h�

u does not call any other subtree on GDf
. We

introduce the term “isolated” subtree to describe h�
u. In

terms of the call graph, this means that, once hu has been

called, execution remains solely in the subtree h�
u until hu is

exited. This suggests that we may wish to consider this

subtree as a single unit. Notice that this may include

subtrees where multiple procedures call the root hu. We

shall term subtrees that make calls to other subtrees on the

dominance tree “nonisolated” subtrees. We have the

following theorem; the proof is in the Appendix.

Theorem 3. Suppose that GC ¼ ðVC;ECÞ is a call graph and

hu 2 VC is such that deCðhuÞ ¼ deDf
ðhuÞ for some dominance

tree GDf
¼ ðVDf

; EDf
Þ. If g1; . . . ; gm are any collection of

vertices on GDf
with the property that, for each i, there is no

direct path between each gi and hu on G, then

h�
u?? [m

i¼1 g
�
i : ð7Þ

If fg1; . . . ; gmg�fanCðhuÞ\VDf
g, withGynhy

u¼ [m
i¼1g

�
i

� �
nh�

u,

then

ðdeDf
ðhuÞ?? Gy n hy

u

� �
Þjhu: ð8Þ

Theorem 3 shows us that “isolated” subtrees are either

independent or conditionally independent of the other

vertices on the call graph. It is irrelevant whether the root of

the “isolated” subtree is strongly directly or just directly

dominated on the dominance tree. Note that, on the

dominance tree in Fig. 1c, B000� ¼ B000� for both the call

graph in Fig. 1a and that in Fig. 1b. For Fig. 1a, we have that

D000� ¼ D000� and, so, from relation (7), B000�??D000�.

C000 is an ancestor of B000 on the call graph and, from

relation (8), we find that ðfB100; B200g ?? C000�ÞjB000.
On the call graph in Fig. 1b, both C000 and D000 are

ancestors of B000 and, so, from relation (8), we find that

ðfB100; B200g??C000� [D000�ÞjB000.
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Assessing whether deDf
ðhuÞ ¼ deCðhuÞ is simple; identi-

fying these subtrees on the dominance tree enables it to

provide more information about the calling structure

without altering its layout. First, there will be a reduction

in the number of call graphs that can produce a given

dominance tree, while, second, there will be an added

ability of the dominance tree to represent more detailed

information. For example, a “single call in” “isolated”

subtree is independent of its neighboring subtrees.

4.3 Modifying the Dominance Tree to Highlight
“Isolated” Subtrees: The Moral Dominance Tree

The shading of vertices on the dominance tree enables us to

identify easily “single call in” and “multiple calls in”

subtrees. The shading also shows where parental loss has

occurred in the abstraction of the calling structure from call

graph to dominance tree. Strongly directly vertices have the

same, unique parent on both graphs while the directly

dominated vertices had at least two parents on the call

graph of which at most one can be a parent on the

dominance tree. We may modify the shading to indicate

whether directly dominated vertices are dominated by one

of their parents from the call graph or by an ancestor.

Without altering the layout of the tree, so that Corollary 1

remains applicable, such a modification provides more

information about the calling structure.

Theorem 3 shows the importance of “isolated” or

“nonisolated” subtrees when determining the relationships

between subtrees on the dominance tree; such subtrees are

not highlighted on the dominance tree but may be formally

identified by determining whether, for each h 2 VDf
,

deDf
ðhÞ ¼ deCðhÞ. Thus, if h 2 VDf

is the root of a “non-

isolated” subtree, then the abstraction of the call graph

results in h losing some of its descendents: deDf
ðhÞ 	 deCðhÞ.

In an analogous way to using vertex shading to highlight

loss of parents in the abstraction, we may use differing

vertex shapes on the dominance tree to represent those

vertices for which chCðhÞ 6� chDf
ðhÞ, chCðhÞ � chDf

ðhÞ only,
or deCðhÞ ¼ deDf

ðhÞ. We propose modifying the dominance

tree into the moral dominance tree.

Definition 10. The moral dominance tree corresponding to a root

node, f , is the graph GDf
¼ðf�;EDf

Þ formed from GCf
¼ðf�;ECf

Þ,
the subgraph of the call graph GC ¼ ðVC;ECÞ, where

f� ¼ ffg [ deCðfÞ. For any two vertices g, h 2 f�, ðg; hÞ 2
EDf

if g directly dominates h on GCf
. If g strongly directly

dominates h on GCf
, then the vertex h is unshaded and h is

shaded if g only directly dominates it. Two shadings are used to

distinguish vertices directly dominated by one of their parents

on GCf
and those directly dominated by a nonparent. If

deCðhÞ ¼ deDf
ðhÞ, then the vertex is a rectangular box with

rounded corners. If only chCðhÞ � chDf
ðhÞ, then the vertex is

an ellipse. If neither of these occur, then the vertex is a

rectangular box.

The moral dominance tree has the same layout as the

dominance tree, see Definition 3; it differs in the shape

and shading of the vertices. Figs. 1d and 1e show the

respective moral dominance trees for the call graphs in

Figs. 1a and 1b. Notice that, unlike the corresponding

dominance tree (Fig. 1c), the two call graphs lead to

different moral dominance trees. In Fig. 1d, D000� is an

“isolated” subtree: D000 is unshaded and is a rectangular

box with rounded corners. We immediately deduce that

D000�??B000� [ C000�. However, in Fig. 1e, D000� is not

an “isolated” subtree: It makes calls to other subtrees. As

D000 appears in an ellipse, we infer that these calls are

made by procedures in deDf
ðD000Þ and not by D000. The

differing vertex shapes introduce more of the calling

structure into the visual summary without destroying the

tree representation. The same is true with the vertex

shadings which help illustrate how “multiple calls in”

subtrees are accessed by “nonisolated” subtrees: Compare

the shading of B000 in Figs. 1d and 1e.

The results of Sections 4.1 and 4.2 provide a formal

relationship between different types of subtrees on the

dominance tree. The dominance relation identifies “single

call in” subtrees which are either independent or condi-

tionally independent to adjoining “single call in” subtrees

dependent upon whether they share descendents (present

in “multiple calls in” subtrees). We modify the vertex

shading to illustrate whether the parent of the root of a

“multiple calls in” subtree is also a parent on the call graph.

Theorem 3 shows that we should also consider whether

subtrees “call out” to other subtrees on the dominance tree;

we add this information to the graphic using differing

vertex shapes.

4.4 Additional Benefits of the g.c.i. Relation

The problem of multiple root nodes. The power of the g.c.i.

relation is that it can be used to assess the relationship

between any collections of vertices by constructing the

corresponding moral graph. It can, for example, determine

the relationship between different root nodes of a call

graph, a facet that the dominance relation is unable to do.

Relationships obtained from the moral graph are valid for

the entire graphical model. Contrast this to the dominance

relation for call graphs with multiple root nodes. Here,

multiple dominance trees are constructed and procedures

may appear on many dominance trees. Relationships

obtained on one dominance tree may not hold on the call

graph; procedures can be strongly dominated on one tree

and only directly dominated on another, they may have

different direct dominators on different dominance trees.

Failure to capture potential reuse candidates. In Fig. 2b,

C001 and D001 are the only “single call in” subtrees

dominated by A000 and Theorem 2 may be used to deduce

that ðC�??D�ÞjB�. The moral dominance tree does not alter

the shape of the dominance tree and the conditional

independence of C� and D� is thus not apparent on the

moral dominance tree corresponding to Fig. 2a. We now

explore whether we can modify the call graph to better

capture its structure on the moral dominance tree.

Consider the collection of vertices fA000, D001, D000g.
Each pair of vertices in the collection are joined by an edge.

If we try to add any other vertex to the collection, then this

is no longer the case. For example, if we add D200, then we

have A000 6� D200. The collection fA000; D001; D000g is
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termed a clique. To quote Whittaker [28, p. 59], “a graph or

subgraph is complete if all vertices are joined with either

directed or undirected edges. A clique is a subset of

vertices which induce a complete subgraph but for which

the addition of a further vertex renders the induced

subgraph incomplete.” Cliques are central to the study of

conditional independencies because any vertex in a clique

on the moral graph is dependent upon all of the other

vertices in the clique. Suppose that the graph G ¼ ðV ;EÞ is
a DAG and the collection G � V forms a clique on G. There
is a unique g 2 G such that ðg; hÞ 2 E for all h 2 Gy, where

Gy ¼ G n fgg. We term g the clique-parent of G. For

example, in the clique fA000; D001; D000g on the call

graph in Fig. 2a, the clique-parent is A000. Note that any

clique on the call graph is also a clique on the error

propagation graph. The dominance relation may struggle

with a clique on a call graph because of the dependence

within the clique. A natural extension of the dominance

relation is to seek the collection of vertices, H, for which,

for all h 2 H, Gy is an ðf; gÞ-separator, where f is a root

node on the call graph. If G comprises of just two vertices,

then Gy is a single vertex, gy say, and H comprises the set

of procedures gy dominates on GDf
. This provides a formal

way of extending the separator set from a single vertex to a

collection of vertices. Indeed, in a similar way to how

cycles are collapsed on the call graph, we may consider

recursively collapsing all cliques on the call graph to just

two vertices: g and Gy before creating the dominance tree.

To illustrate this, consider the call graph in Fig. 2a. We

examine cliques with at least three vertices. There are

two such cliques which have A000 as a clique-parent:

fA000; C001; C000g and fA000; D001; D000g. We merge

C001 and C000 into a single vertex fC001; C000g whose

children are the combined children of C001 and C000. We

similarly merge D001 and D000 together; the merged

vertex having as children the union of the children of D001

and D000. On the resultant call graph, fD001; D000g is the

clique-parent of the clique ffD001; D000g; D100; D200g
and, so, D100, D200 may be merged to a single vertex. All

other cliques on the call graph contain just two vertices.

The modified call graph and moral dominance tree are

shown in Fig. 2c and Fig. 2d respectively. Notice that there

are only two out of 11 shaded vertices in Fig. 2d compared

with the seven out of 14 in Fig. 2b which, intuitively,

suggests the usefulness of Fig. 2d over Fig. 2b for program

comprehension of the original call graph, Fig. 2a. The

merging of the vertices in Fig. 2c enables the dominance

relation to obtain the three subsets B�, C�, D� discussed in

Section 2.4. The subtrees C� and D� have a different shape

on Fig. 2d reflecting the g.c.i. property ðC100??C200ÞjC110,

whereas D100 and D200 are dependent. This contrasts with

the scenario in Fig. 2b. The similarity in structure between

Figs. 1b and 2a is now apparent. Indeed, removing the

cliques in Fig. 1b results in merging the vertices D100 and

D200 so that the resultant call graph has the same shape as

that in Fig. 2c.

5 CONCLUSION

Dominance tree analysis may be used to identify subtrees

which may be considered as potential reuse candidates. The

subtrees considered are those we termed “single call in”

subtrees. The dominance tree does not explain the relation

between “single call in” subtrees and vertices who are only

directly dominated.

To address this, we introduce a g.c.i. relation over the

call graph. This supports the argument for the potential

reuse candidates obtained from the dominance tree by

identifying “single call in” subtrees as being either

independent or conditionally independent of other “single

call in” subtrees. The conditional independence occurred

when “single call in” subtrees made calls to the same

“multiple call in” subtrees. The “multiple call in” subtrees

have a root which is only directly dominated and, so, the

conditional independence relation not only supports the

dominance tree analysis, but strengthens it by explaining

the relationship between the strongly directly and directly

dominated vertices.

We argue that it is not just “single call in” subtrees that

should be highlighted as potential reuse candidates, but

also “isolated” subtrees, subtrees which make no calls to

any other subtree on the dominance tree. As such, we

propose modifying the dominance tree to the moral

dominance tree which provides a greater understanding

of the relationships between individual branches and also

highlights areas where further investigation, in particular,

the “nonisolated” “multiple calls in” subtrees, using the

g.c.i. relation is required.

The g.c.i. relation is a tool for investigating any

collection of vertices. It provides a formal theoretical

framework for the previous heuristic approach, thus

enhancing the argument for the adoption of potential

reuse candidates and developing a formal relationship

between the candidates. Additionally, we are able to

understand collections where the dominance relation

exhibited a lack of understanding. We also considered

how the dominance relation could be improved so that it

could handle cliques. Combining the dominance tree

analysis with the g.c.i. relation provides us with a more

detailed understanding of the relationships within the

calling structure and, thus, our level of comprehension.

APPENDIX

PROOFS OF THEOREMS

Proof of Theorem 2. Note that for any h 2 VC , h
� is also

the collection of h and its ancestors on the error

propagation graph. From Lemma 1, to show (5), we

construct the associated moral graph ~GGMðh� [H�Þ,
where H� ¼ [l

k¼1h
�
jk

and consider separations on this

graph. Notice that VMðh�
i [H�Þ ¼ h�

i [H�. Let A ¼
[l
k¼1fdeCðhiÞ \ deCðhjkÞg, B ¼ [l

k¼1fdeCðhiÞ \ decCðhjkÞg,
and C ¼ [l

k¼1fdecCðhiÞ \ deCðhjkÞg; A, B, and C are

mutually incompatible.
If A ¼ ;, then the subgraphs h�

i and H� are uncon-
nected on GC and, thus, on ~GGC . If they are connected on
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~GGMðh�
i [H�Þ, the path must have been formed by the

marriage of some hi1 2 deCðhiÞ and some h�1 2 [l
k¼1

deCðhjkÞ. Since A¼;, deCðhiÞ¼B, and [l
k¼1deCðhjkÞ ¼ C.

If A 6¼ ;, then the subgraphs h�
1 and H� are connected

on GC and, thus, on ~GGC . The connecting vertices are A.

There is no arc between any hi1 2 B and any h�1 2 C

(and vice versa). Any path between B and C which does

not pass through an element of A must evolve through

the marriage of some hi1 2 B and some h�1 2 C.

In either case, we require the addition of an arc

between some hi1 2 B and some h�1 2 C. This will occur,

see Definition 9, if there exists h2 2 h�
i [H� such that

fðhi1; h2Þ; ðh�1; h2Þg � ER or, equivalently, fðh2; hi1Þ;
ðh2; h�1Þg � EC . If h2 2 A, then fhi1; h�1g 	 A: a contra-
diction. If h2 2 h�

i nA, then h�1 2 deCðhiÞ: a contradiction.

If h2 2 H� nA, then hi1 2 [l
k¼1deCðhjkÞ: a contradiction.

Thus, there is no such h2 2 h�
i [H� and the results

follow. tu
Proof of Theorem 3. Once more, for any h 2 V , we let

h� ¼ h [ deCðhÞ. Let G� ¼ [m
i¼1g

�
i . From Lemma 1, we

need to consider separations on ~GGMðh�
u [G�Þ. Notice that

VMðh�
u [G�Þ ¼ h�

u [G�. Since deCðhuÞ ¼ deDf
ðhuÞ, then

the only calls from VDf
n h�

u to h�
u on GC are to hu only.

If there is no direct path between each gi and hu, then

each gi 2 VDf
n h�

u and hu =2 deCðgiÞ. Thus, g�i \ h�
u ¼ ; and

the subgraphs h�
u and G� are unconnected on GC and,

thus, on ~GGC . For them to be connected on ~GGMðh�
u [G�Þ,

the path must have been formed by the marriage of some

hu1 2 h�
u and some g�1 2 G�. We may show this cannot

occur in an identical way to the proof of Theorem 2.

Property (7) thus follows.

Property (8) also follows by observing that, if each

gi 2 anC \ VDf
, then the subgraphs h�

u and G� are

unconnected on GC , but only at hu. Following the proof

of Theorem 2, we show that there can be no marriage
between some hu1 2 h�

u and some g�1 2 H� n h�
u. tu
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