JOURNAL OF SOFTWARE MAINTENANCE: RESEARCH AND PRACTICE

J. Softw. Maint: Res. Prac2000;00:1-2 Prepared usingmrauth.cls [Version: 2001/03/16 v1.01]
Research

An Improved Method of F————1
Selecting Regression Tests for =—
C++ Programs ————

Y. K. Jand*, M. Munro?, and Y. R. Kworl e

! Department of Electronic Engineering and Computer ScieKoeea Advanced Institute of Science and
Technology, 373-1, Kusong-dong, Yusong-gu, Taejon, 8@5Kbrea

2 Department of Computer Science, University of Durham,ri8eié.aboratories, South Road, DURHAM,
DH1 3LE, U.K.

SUMMARY

This paper describes an impact analysis technique that ideifies which parts should be retested after a system
written in C++ is modified. We are interested in identifying the impacts of changes at the class member-level by
using dependency relations between class members. We tryfiad out which member functions need unit-level
retesting and which interactions between them need integtan-level retesting. To get precise analysis results,
we adopt a technique that classifies types of changes and ayzé the impact for each type. Primitive changes,
changes which are associated with C++ features, are first datd and their ripple effects are computed in order
to construct a firewall for each type of changes systematiclgl We have applied our prototype tool to a real
system with small size. This case study shows some evidenkattour approach gives reasonable efficiency and
precision as well as being practical for analyzing change ipacts of C++ programs.

KEY WORDS: regression testing; change impact analysis; objecttai®mn; firewall; dependency relation

1. Introduction

Whenever a program is modified, it must be retested to agcerteether changes have been made correctly
and whether those changes have caused any adverse effesdbehavior. However, testing is a complicated
and expensive activity: some studies have shown that mare36% of development effort in the life cycle
of a software program is spent on testing and when maintensnimcluded, nearly two thirds of the
development effort[1, 2]. Therefore, several selectiteseng techniques have been developed in order to
reduce the time and effort of retesting.

Some essential issues in selective retesting technigeeglgrhow to identify changes of a program
and the affected components, (2) how to maintain test sditesg evolution of a program, (3) what test
strategy should be used to retest these affected compoaadt$4) how to select reusable test cases and
generate new ones if necessary[3]. Among these issues, aus fin change identification and impact
analysis.

Identifying the impacts of changes must be reasonably geex that we can isolate as many parts of
the program as possible from retesting[4]. On the other hitrede is an observation that the more precise
an approach is, the less it becomes efficient[5]. For exanaplepproach which identifies statements to
be retested is more precise than an approach which choasetiohs as a retesting unit, but the former
can be less efficient than the latter. Moreover, it must b@asrtpd by automated tools because retesting is
a time consuming activity which requires dependency infitfam between components of a program. In

*Correspondence to: Y. K. Jang, Department of Electronidri&sging and Computer Science, Korea Advanced Institutc@nce
and Technology, 373-1, Kusong-dong, Yusong-gu, Taejor785 Korea. E-mail: ykjang@salmosa.kaist.ac.kr

Copyright(© 2000 John Wiley & Sons, Ltd.

2 Y. K. JANG M. MUNRO Y. R. KWON

(i

this paper, we aim to devise an approach which maintainsanbalbetween precision and efficiency and
which supports automation.

Object-oriented languages such as C++ and Java includeptmsuch as inheritance, polymorphism,
and dynamic binding. These features not only result in moraptex dependencies between program
entities but also make dependency analysis more diffiquif@ have previously developed an approach
for analyzing change impact of a C++ program[7]. Althoughapproach was basically based on the class
firewall method[8], but we are interested in identifying wiimember functions(of a class instead of a
class on a while) had to be retested after modification. Tapepsystematizes our previous approach in
identifying change impact of C++ programs in an effort taesélas a small number of retesting sets as
possible and discusses on a tool which implements our aplproée first define changes associated with
C++ features as primitive changes and compute their imp@ben, we classify changes that can occur
in a C++ program and construct a member-level firewall fohdgpe of classified changes by using the
firewalls of primitive changes. We also describe the resafltscase study using a small example program
to show whether our approach provides reasonable predsidrefficiency in assessing the impacts of
changes. Our approach regards a C++ program as our targgaprdecause it is being widely used, but
it can be made applicable to other object-oriented langsiageh as Java.

The rest of our paper is organized as follows. Section 2 pteggevious researches related to regression
testing and change impact analysis. Section 3 describestipeé changes and their firewalls. It also
presents changes which may occur in a C++ program and howngtrcat their firewalls by using primitive
cases. In Section 4, we explain the structure of our tool awvd dur tool works using a small example.
Section 5 describes the results of a case study with a sa&ftsyatem written in C++. Section 6 summarizes
contributions of this work and suggests further researactons.

2. Related Works

Some approaches for analyzing change impact of objecttede programs have been developed.
Rothermel and Harrold[9] used dependence graphs thatsemrdoth control dependency and data
dependency at the statement-level in an abstracted formasées and application programs. They
constructed dependence graphs for both the original pnograd the modified program, and then observed
the differences between the two graphs by comparing casreBpg nodes during the graph-traversal.
Although the results of impact analysis might be very peciata flow analysis is often restricted to
the intra-procedural level and its computational compiemiay be costly. Therefore, application of this
approach seems to be restricted to programs with a small@izthe other hand, Kung et al.[8] introduced
a notion of class firewall based on three dependency relabetween classes - inheritance, association,
and aggregation - to identify the effects of a class-levadification. This approach is less precise than that
of Rothermel and Harrold[9], but more efficient for largets@fre systems. The fundamental difference
between these two approaches is the granularity of retestiits and dependency information used in
analysis. While Rothermel and Harrold regarded a statemeat retesting unit and used the statement-
level dependency information, Kung et al. considered ascéagnit of retesting and used the class-level
dependencies. In our approach, we regard a member funcii@ ratesting unit and use dependency
information at the member-level because it is expectedyve gireasonable precision and efficiency in
analyzing change impacts.

Some approaches have categorized the code changes thaenreade to object-oriented software and
analyzed how these changes affect other classes in thersistader to obtain reasonable precision and
efficiency[10, 5, 11]. Kung et al.[10] provided a regresdiest model that consists of object relations and
the interface, control structure of a member function inass] and relationships to other data items and
function members of classes. They dealt with data changidadehange, class change, and class library
change and described how to identify each type of changeeMemtheir computed firewall was restricted
to identifying the effect of a class change at the classk@wpact analysis for other change types is needed.
Li and Offutt[5] first analyzed how encapsulation, inherita, and polymorphism would affect the impacts
of changes and described algorithms to identify potegtiaffected classes by using transitive closure
dependency relations between class members. They notetighaossible to optimize their algorithms by
categorizing the possible code changes and by giving eaatgehan attribute according to the degree of

Copyright(© 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Prac2000;00:1-2
Prepared usingmrauth.cls

A REGRESSION TESTING OF C++ PROGRAMS 3

([

its influence on other classes. Although this approach igmoecise than that of Kung et al., there exists a
room for reducing the impacts identification efforts beesthey use transitive closure dependency without
considering types of changes; retesting the changed dasx always necessary and sometimes, changes
may not be propagated to other parts which have transito®iok dependency[12, 11]. Furthermore, they
did not consider changes to inheritance relations andalimember functions. Our approach basically
follows this approach, but we hope to identify change impactre precisely by utilizing information on
the types of changes.

Chaumun et al.[11] defined 63 changes which can be made iss elanember function, and a variable
and used association, aggregation, inheritance, and atieoclinks to analyze the impact with. Their
experiment with a small C++ program showed that there wasnpadt for 22 of these changes, there
was only local impact for 4 changes, and there was impactieratlasses for 37 changes. Rangaraajan et
al.[12] assumed that any change to a C++ class must be a giomuirom a finite set of atomic changes,
minimal units that the program compiles and links. As a dote to judge whether a member function
needs to be retested after a sequence of atomic changesjgbéythe information of all symbols this
function binds to statically. They all found that some chesido not require retesting.

Vokolos and Frankl[13] have presented a textual differegéechnique that compares source files from
the old and the new versions of a program in written C. They uk#, the file comparison program,
as a comparison tool in order to determine the differencethénprogram texts. They showed that
their approach is adequately effective in practice throagipirical results. On the other hand, Chen
et al.[14] have developed a regression test selection to@lhich diff identifies modifications to the
code entities(functions, variables, types, and prepsmrasnacros) of a C program and their dependency
relations. It is a relatively coarse-grained analysispsatluces a reasonable and practical tradeoff between
granuality of analysis and time/space complexity. Thigeaesh showed the practicality of impact analysis
tools which are implemented usingf .

From the brief survey above, we observe that many of the puevdpproaches are often biased either by
efficiency or precision and the change impact models ara aftsomplete or not systematic. We also note
that retesting efforts can further be reduced by analyziagemprecisely the impact of changes.

3. Change Impact Analysis

In this section, we present an approach to identifying cbdeges and their impacts automatically. We are
interested in identifying member functions that shoulddtested when a C++ program is modified. Also,
we aim at constructing a change impact model as systemgtizal precisely as possible for each type of
change. First, we classify types of changes and analyzerpadt for each type. We define the impacts of
the changes associated with C++ features to compute a fif@wvahch type of changes.

3.1. Categorization of Changes

In order to identify member functions affected by changepghdency relations such as invocation relation
between member functions, data definifiase relation between a member function and a data member,
and inheritance relation between member functions are. Usedcation means that a member function
is called by another member function. A data definifiese dependency is established when a member
function(or a global function) defingdases the value of a data member. We call these functionstitsfini
use functions of the data member. In our approach, we assuahéhe value of a data member is used or
defined only by member functions or global functions. Regpaydhheritance relation as an incremental
modification, a class member is classified intw recursive andredefinedaccording as to whether it is
inherited from the parent class or not[15].

We consider levels of changes according as where these ehang made. Four levels of changes in a
C++ program are considered: changes at the level of a datdberemmmember function, a class, and the
inheritance relation. We explain each type of change in rdetails below.

¢ Types of change at the level of a member functionChanges to a member function can be made in
three different ways: addition or deletion of a member fiorgtchanges to its interface, and changes

Copyright(© 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Prac2000;00:1-2
Prepared usingmrauth.cls

4 Y. K. JANG M. MUNRO Y. R. KWON

(i

to its implementation. Therefore, addition of a new memhbacfion, deletion of a member function,
changes of virtuality, visibility, signature, and a changé¢he implementation are regarded as types
of change at this level. As a change to the implementationtake into consideration changes to
data definitiofuse relation and invocation relation because we use the erleel dependency
relations.

e Types of change at the level of a data membefFor a data member, its visibility or data type can
be changed and a new data member may be added, or an existingember may be deleted.
Changing the value of a data member is considered a change tmplementation of its definition
member function that modifies the value of the data; theegftiis type of change is not a change
type at this level.

e Types of change at the level of a clas€hanges at the class-level are addition of declaration of a
new class and deletion of declaration of an existing clasde khat changes are made at different
levels. For example, if we want to add a new claswith a member functiomn, two changes must
be made; firstA is added, which is a change at the class-level and thes,added ta4, which is a
change at the member function-level.

e Types of change at the inheritance relation:These changes include adding or deleting an
inheritance relation between two existing classes. Wheeva inheritance relation is added, the
implementation of member functions in the derived class lmamodified in order to use newly
inherited members from the base class. On the other handiriharitance is deleted and the member
functions in the derived class can no longer use inheritechbees, their implementation must be
changed.

Table | lists a total of 30 types of changes. We are not comdnehether our classification about changes
is complete or not, but included all changes that can be gpenade. Basically, when one type of change
is made to a system and impact analysis for that change isrpeetl. However, we also allow restricted
multiple types of change at the same time. As an example, ineember functiom 1 is added(addition of
a member function), it can invoke existing member funct{ohange to implementation ei1) and another
member functionn2 can be modified in order to invoke the added function(chaageplementation of
mZ2). We define these multiple types of changehanges in the same change scapEable | also shows
changes in the same change scope as each type of change Wafteepeogram undergoes several changes
in the same change scope, we calculate change impacts bsiafgbrithms to be discussed in Section 3.3.

[Table 1 about here.]
3.2. Impact Analysis for Primitive Changes

In software systems written in a procedural language, ddgreties between functions or data tend to be
explicit. However, a C++ program includes features thatrhaguse implicit dependencies. Access control
to members encapsulated in other classes creates moreeodggpendencies along with inheritance

relations which allow members in a derived class to use mesrdefined in its parent classes. Moreover,
dynamic binding makes invocation relations between menfilnections unclear because it allows the

decision on implementation to be delayed until run-time. t&# changes associated with these C++
featuregrimitive changesand define the following eight primitive changes.

¢ Changes to the scope of a member functioithe scope of a member function is defined as member
functions which it invokes and as data members whose vaheadedined and used. When a member
is added or deleted, the scope of other member functionshmihteract with it can be changed
implicitly as well as explicitly. Cases of addition and dé&e of a member function are defined as
Cases 1 and 2, respectively.

¢ Changes related to dynamic bindingMWhen a virtual member function is called, it is difficult todin
out which function is actually being invoked among it andvitsual-redefined functions. Whenever
there existimplicit dependencies from their calling fuons to virtual functions, those dependencies
should be retested. We define four more primitive cases.

— Case 3: Invocation to a virtual member function is added.

Copyright(© 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Prac2000;00:1-2
Prepared usingmrauth.cls

A REGRESSION TESTING OF C++ PROGRAMS 5

([

— Case 4: An implicit invocation can be raised by an existingaelency when a virtual-
redefined member function is added to a derived class.

— Case 5: When the virtuality of a member function in a basesdlshanged(a virtual member
function is changed into a non-virtual function or vice \&@rsan implicit invocation with a
redefined member function in its derived class can be created

— Case 6: A new invocation can be created because of the chdregenember function’s
interface in a base or a derived class.

¢ Changes to data definitiorfuse: Case 7 is a change to definition of a data member in its definitio
member function and Case 8 is a change to use of a data memiteuse member function. To
assess the impacts of these changes, we use data defin#&®dependencies that are shown at the
member-level. Such information is less precise than dapemldency at the statement-level, but it
helps to avoid the complexity of analyzing data-flow at tteeshent-level.

The impacts of changes in the same change scope which wenedl@fi Section 3.1 is composed of
those primitive changes. First, we find out the impacts ahfiive changes in order to identify a member-
level firewall for a type of change. Figures 1 and 2 summatieeimpacts for each of primitive change.
A firewall(F') is one of three types: a unit firewall(;), a set of member functions which require unit-
level retesting, an integration firewallf), a set of interactions between member functions whichirequ
integration-level retesting, and a definition-conflictckérewall(Fp g r), a set of member functions which
need to check whether their definitions for it are conflictingpen they define the value of a given data
member.

We briefly explain the impacts of some primary cases. Figyp@ ¢hows an example of Case 1: an
invocation fromDerived.m2 to Base.m3 is changed to the invocation froMerived.m2 to Derived.m3
when a new member function3 is added to a clasBerived. Then, the functionality oDerived.m?2 is
changed because it invok&g:rived.m3 and it might have an influence on other member functions which
invoke it. Therefore, both the member function added andratiember functions that call it directly or
indirectly need retesting at the unit-level and the intdgralevel.

Figure 1(d) describes Case 3 in whiBlase.m1 has a new implicit interaction witberived.m3 when
the program is changed such that an invocation fi&me.m1 to a virtual member functioBase.m3 is
added. In this casé&Base.m1 and member functions which invoke it are includedrinbecauséBase.m1
might have a different functionality. Also, the interact®obetween them and newly created interactions
require integration-level retesting.

Figure 2(c) shows an example of Case 7 in which a definition begrfunction Base.m1 of a data
memberdl modifies the value ofi1. Then, the definition member functions @éf must be tested at the
integration-level in order to check whether new definition the value ofd1 is in conflicts with other
definitions or not[16]. Also, we must test the usage of newnd&n to confirm that this change is correct.
As a way of identifying the impacts of definitignse of data, we usechanged definition-use paifwhen
m1 changes the value dfl or m2 modifies the use af1, a pair ofm1 andm2 is a changed definition-use
pair). We assume that the usage of the changed definitiorofgepy tested if there is no error between
the changed definition and any use of the data member. It $spieise than data flow analysis at the
statement-level, but it is more efficient, and still giveseasonable precision. We do not explain other
primitive cases shown in Figures 1 and 2 because they arlasimicases described before. More detailed
explanation can be found in [7].

[Figure 1 about here.]

[Figure 2 about here.]

3.3. Impact Analysis for Each Type of Changes

The firewall for each type of changes is calculated by usiedfilewalls of primitive changes developed
earlier. The complete algorithms for constructing themehdeen explained previously [7]. For purposes
of illustration, we describe how to construct a firewall wieemember function is added:

Copyright(© 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Prac2000;00:1-2
Prepared usingmrauth.cls

6 Y. K. JANG M. MUNRO Y. R. KWON

(i

Addition of a member function: If an added member function defines(uses) the value of a databmr,
it is supposed that the added function has changed the dwsfiuise) of the data. In this case, a
firewall is constructed by combining the firewall of Case ®E€®8) and itselfFy;(m, d, case 7),
Fr(m, d, case 7), andFpgr(m, d, case 7) indicateFy;, Fr, andFpgr of the Case 7 respectively,
wherem is a modified definition member function of a data memide©n the other hand, if a
redefined or virtual-redefined new function is added to avédrclass, new dependencies such as the
Cases 1 or 4 can be created. Then, the firewall is combinedhétfirewalls,Fi; (m, casel(4)) and
Fr((m, casel(4)), wherem is the added member function.

When an added function uses virtual member functions, ggarded as a function which has been
modified in order to invoke virtual functions like Case 3. Shits firewall is used to identify its
impacts. Also, some member functions can be modified in otalénvoke the added function.
In this case, member functions which invoke the added orextiror indirectly need unit-level
retesting and their interactions need integration-legtisting. The algorithm constructing firewall
for addition of a member function is summarized as follows:

1. Let an added member function bg,qq. Then,Fy = Fy U {mgaa}
2. If mqqq 1s a definition member function of a data member

(@) Fv = Fv U Fy(madd, d, case 7)
(b) Fr = Fr U F](madd, d, case 7)
(¢) Fper = Fper U Fper(madd, d, case 7)

3. If mqqq IS @ use member function of a data meméer

(@) Fv = Fv U Fy(madd, d, case 8)
(b) Fr = Fr U F](madd, d, case 8)
(¢) Fper = Fper U Fper(madd, d, case 8)

4. If myqq is aredefined or virtual-redefined member function,

(a) Fu Fy U Fy(madad, case 1)
(b) Fr Fr U F](madd, case 1)

5. If mqqq is a virtual-redefined member function,

(a) Fy Fy U FU(madd, case 4)
(b) Fr Fr U Fi(madd, case 4)

6. If mqqq inVokes a non-virtual member function;,
(@) Fr = Fr U interaction({m;}, {madai})
7. If mqqq invokes a virtual member functioim;,
(@) Fu = Fu U Fy(mada, case 3)
(b) F1 = Fr U Fi(mada, case 3)
8. If m; invokesmgqq,
(a) Fu Ul call’ (m;) 4 4
(b) Fy Uy interaction(call’ (m;), call'™ (m;))

4. Prototype Implementation

We have developed a prototype system which implements quoaph and conducted a case study to
show its practicality. The results of our case study will ligcdssed in Section 5. First, we describe the
configuration of our prototype system and explain how théesgsvorks with a simple example.

4.1. Tool Architecture

Figure 3 shows the overall structure of our prototype systéms prototype system has been developed by
integrating the following programspp, the C/C++ preprocessadtiff, the general purpose file comparison
program;gen++, an analyzer generator and a tool generation facility for[@¥], and GraphToo| a
graph layout tool developed in RISE at the University of Dantthttp://www.dur.ac.uk/RISE). This system
automatically identifies the type of change and member fanstpotentially affected by the change. It
consists of three components: a program analyzer, an inapatyzer, and a graph tool.

Copyright(© 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Prac2000;00:1-2
Prepared usingmrauth.cls

A REGRESSION TESTING OF C++ PROGRAMS 7

([

[Figure 3 about here.]

Program Analyzer: Our program analyzer was generated from the query programlaieed using
gen++. It takes a C++ program preprocessedcpy as input, and outputs dependency information
on the input program for impact analysis. One of the outpasfit.2dgin a textual graph format
for GraphTool Another output file,cmp has information about entities(classes, data membeus, an
function members), inheritance relations, and membegt@ependencies of the input program.

Impact Analyzer: After the old and the new versions of a program are procesgethé program
analyzerdiff compares theircmpfiles which contain dependency information. While Vokolosla
Frankl[13] made the source-to-source comparison dith we compared dependency information
of two programs in order to determine the impacts more pedcidthough the difference in the
program texts has no impacts on dependence relation, tess eghich cover this difference are
selected as reusable ones. The impact analyzer examinestthe ofdiff to determines which type
of change is made in the old version of the program. We wikftyiexplain how to determine the
type of change in Section 4.2. It subsequently constructemlmer-level firewall according to the
firewall construction algorithm of the identified type of clgg described in Section 3.3.

GraphTool: It helps us understand the structure of the subject prograhdependency relations between
program entities by presenting it in a graphical form. loatempares the graphs of old and new
versions of the input program.

4.2. An Example
[Figure 4 about here.]

Figure 4 shows an example program to be used to explain hosystem works. Figures 4(a) and 4(b)
are the old and the new versions of the program, respectiierectangular portion in Figure 4(b) shows
which parts of the program were changed in the old versiothignrexample, the type of change is addition
of a new member function; a member functiohis added to the class andY :: y4 is changed to invoke
it. The program analyzer generates output fikesl.cmp, ex1.2dg, ex2.crgndex2.2dg which include
dependency information efc1 andez2. These files are in the textual graph format@eaphToo] which
is composed of nodes that represent class, class membea dlta function, and function parameter and
edges that indicate dependencies between nodes. Tab)lsHt{as a template of a node which represents a
member functiong +Node> and<-Node> indicate the beginning and the end of definition of a ngag,
means that this node represents a member fundtianipility], [virtuality], and[type] has the interface
information about the member functiogqualifier::namerepresents the name of the member function and
its qualifier, and alefined classnaintains a name of a class which defines the member fun&ionilarly,
Tables lli(b)}~(e) show a template of a node which represents a data membexdayes which indicate
member-level dependencies.

[Table 2 about here.]
[Table 3 about here.]
[Table 4 about here.]

In this examplediff creates a filegx1 ex2.diff, which includes textual differencies betwestl.cmpmand
ex2.cmpSince thediff file has a unique format according to the type of change, tipagnanalyzer can
identify which type of change was made in the program. Talblshows a pattern of adiff file when a
new member function is added to the program. Table IlI(alciatgs that a new member function is added;
(b) and (c) show that the added function defines and uses the ghan existing data member, (d) and
(e) show that the added function invokes a member functfpehows that a member function invokes the
added one, and (g) shows that since the added function ifimeder virtual-redefined function, primary
changes such as Case 1 and Case 4 happen.

Copyright(© 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Prac2000;00:1-2
Prepared usingmrauth.cls

8 Y. K. JANG M. MUNRO Y. R. KWON

(i

The impact analyzer first identifies the type of change; ibgamizes that a new member function was
added to the new version when the format of Table Ili(a) iDgmized, (b)-(f) are changes in the same
change scope as (a), and (g) was made additionally beca(spg bforeover,diff includes information on
other changes that were affected by the above changes.|Vatitews theex1 ex2.difffile of this example.
The impact analyzer interprets each part of this output §ileoows:

(a) A new member functiol” :: 23 is added.
(b)Y :: 22 invokesY :: x3.

(c)Y :: 23 defines the value df :: d3.

(d)Y :: 23 uses the value ok :: d1.

()Y :: z3 invokesY :: yl.

(f Y :: y4 invokesY :: x3.

Upon determining a type of change, the impact analyzer coespits firewall using the firewall
construction algorithm corresponding to that type. As shaw Table lll, (ax(f) are matched with
appropriate parts of the algorithm explained in Section Jable V shows the computed firewall of
this example. For each of (&ff), unit firewall and integration firewall were computed;itufirewall
includes member functions(e.d’, :: 23) to be retested at the unit-level, and integration firewatludes
interactions(e.g.X :: z4 — Y :: y3) between member functions to be retested at the integréeiat and
interactions(e.gY :: z1 — Y :: 23) to be retested in order to check whether they are in conflittsthe
definition of a data member or not. In this paper, we do notesklhow to retest member functions and
interactions in the computed firewall.

[Table 5 about here.]

5. A Case Study

We have applied this prototype tool to a small target prograarder to show its practicality. We hoped to
explore in particular, (1) whether it can identify types bboge from the difference information obtained
by comparing the textual dependency of two versions of anaragand (2) whether our approach, which
analyzes the impacts according to the type of change, iscaiybe to a realistic software system.

The software used in our experiment is a drawing program lwbansists of 11 program files and 18
header files. This program defines 26 classes to supporugadi@wing functions[18]. Without any other
version of this software available, we had to make new vassa this software by hand. For every class,
we made a new version by deleting each member function exsepbnstructor or destructor at a time.
Thus, as many second versions as the member functions weatedr Each version was modified to be
compiled without any error: declaration of a member functits implementation, and the invocation from
other member functions to the deleted one were removed. geahalyzed the original version and each
new version to determine the impacts. Since th®lication class included in this software has seven
member functions, seven second versions were preparecesad Brewalls were obtained as the result
of analysis for each version. We combined these resultsadyme one firewall because we were simply
interested in identifying how many member functions are@#d by this type of change - deletion of a
member function defined in a class.

Table VI shows all the classes defined in this software andhtimeber of member functions defined in
each class. The results of impact analysis for deletion oémbrer function consist of a unit firewall, an
integration firewall and a set of member functions for chegldefinition conflicts. Classes in a drawing
program can be classified into four groups as follows:

e The firewall includes no class.For 10 classe$)OS Keyboard, EllipseT ool, EventH andler,
GraphicsScreen, Line, LineT ool, Node, Poller, Rectangle, and RectangleT ool), deletion of a
member function had no impact on any other classes. We dida®gat to consider this type of change
for classN ode because it has no member function. Even though other cldsfieed some member
functions which have their implementation, this change it affect other parts of the software
because no member function invokes them nor they define atataeanembers.

Copyright(© 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Prac2000;00:1-2
Prepared usingmrauth.cls

A REGRESSION TESTING OF C++ PROGRAMS 9

([

e The firewall includes only the changed classThe classDiagram Editor had an influence only

on itself. It has 8 public member functions: 2 member fundiare without implementation, and 6

member functions which are used only within the clB8sgram Editor.

The firewall includes classes other thanSix classesdpplication, Display, Keyboard, Mouse,

Tool, andT ool M anager) had influence on other classes, but not on themselves. ddtholasses

Application, Keyboard, andT ool have 4 member functions in their firewall, they do not affect

other classes because they include only pure virtual mefahetions.

e The firewall includes both the changed class and other classeNine classeg{ollection,
CollectionIterator, Control Point, CreationT ool, Drawing, Element, Ellipse, M S M ouse,
andSelectionT ool) affected other classes as well as themselves.

[Table 6 about here.]

Table VI lists the number of classes included in the firewhthined by our approach and in the firewall
obtained by the class firewall approach[3] separately. Ageted, in most of classes, the size of our firewall
turned out to be smaller than that of the class firewall apgro&his is understandable because isolating
their impacts according to the types of changes is more ggdbtian the class firewall approach which
includes the impact of all types of changes. However, in #s=s in which a member function was deleted
in CollectionIterator, Ellipse, M S M ouse, andSelectionT ool classes, our approach resulted in larger
firewalls than the class firewall approach. The reason apddarbe due to association relations between
classes: our approach detected more precise associdttione by analyzing dependency relations among
class members.

This case study shows that our approach works for a readisftevare system; it has demonstrated that
it is possible to identify a type of change from the differerigformation obtained by comparing textual
dependencies at the member-level of two programs and tyzm#ie impacts of that. A case study on
only one type of change, deletion of a member function, waslaoted because creating several versions
of the target programs manually was time consuming. Thesefois desirable to have more empirical
results for other types of changes to have more evidencethatpproach produces reasonable efficiency
and precision.

6. Conclusions

In this paper, we described an approach which constructwdile at the class member-level as a
mechanism for identifying the impact of a change to a softwgrstem written in C++. Techniques for
analyzing dependencies among program statements maydpraecurate impact results, but they are
applicable only for programs of a small size because of a¢igh On the other hand, methods of analyzing
at the class-level tend to select too many parts as the sesfitlie impacts analysis even when changes are
very small in a program. In our approach, a member functicheemsidered a unit of impact identification
to attain reasonable precision and efficiency. We attemjotedduce retesting efforts by classifying the
types of change and identifying the impacts of each typeh@gh the classification of type of change
may not be complete, our classification scheme is being widséd[5, 10, 11] and we believe that it
represents the most common changes which are made in a Cgrapro

We have implemented a prototype system which implementsapproach by integratingpp, diff,
gen++, andGraphTool Our experiment with a small drawing program showed thatagyoroach which
uses classification of changes was able to identify the tfpehange using the difference information
obtained by comparing dependency information of texts eftto programs, and analyze impacts of the
change. We showed that our approach identified change isipae precisely that a class-level approach
did. Further experiments with larger systems are needetdw shat our approach produces reasonable
efficiency and precision in selecting a set of retesting ¢ases. Comparison of our approach with other
techniques such as [5, 11, 13, 9] are also desired. This pasdocused on the activity of change impact
analysis as a starting point of a research on regressiange#fe need to consider other issues of regression
testing such as test suite maintenance, test strategyeantest generation.

Copyright(© 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Prac2000;00:1-2
Prepared usingmrauth.cls

10 Y. K. JANG M. MUNRO Y. R. KWON

(i

REFERENCES

1. E. Kit. Software Testing in the Real World: Improving the Prodqdss$.edn). Addison-Wesley, 1995.
B. P. Lientz, E. B. Swansoisoftware Maintenance Manageméhst edn). Addison-Wesley, Massachusetts, 1980.
. G. J. MyersThe Art of Software Testigst edn). Wiley-Interscience, New York, 1979.
P. Hsia, X. Li, D. C. Kung, C. T. Hsu, L. Li, Y. Toyoshima, Chén. A technique for the selective revalidation of OO sofewa
J. Software Maintenance: Research and PracfiagéAug 19979(4):217-233.

4. G. Rothermel, M. J. Harrold. Analyzing regression te$¢a®n techniqueslEEE Trans. Software Engineerinug 1996;

22(8):529-551.

5. L. Li, A. J. Offutt. Algorithmic analysis of the impact ohanges to OO softwar@roc. IEEE Int'| Conf. Software Maintenance

1996;171-184.
6. N. Wilde, R. Huitt. Maintenance support for OO progratEEE Trans. Software Engineeriigec 1992;18(12):1038-1044.
7. Y. K. Jang, H. S. Chae, Y. R. Kwon, D. H. Bae. Change impaelyais for a class hierarchfroc. Asia-Pacific Software
Engineering Conferenc£998;304-311.
8. D. C. Kung, J. Gao, P. Hsia. Class firewall, test order, agdassion testing of OO progrands Object-Oriented Programming
May 1995;8(2):51—65.
9. G. Rothermel, M. J. Harrold. Selecting regression test®D softwareProc. IEEE Int'| Conf. Software Maintenand®94;14—
25.
10. D. C. Kung, Gao, Jerry, Chen, Cris. On regression testir@O programsJ. Systems and Softwat896;32(1):21-40.
11. M. A. Chaumun, H. Kabaili, R. K. Keller, F. Lustman. A clggnimpact model for changeability assessment in OO software
systemsProc. IEEE Third European Conf. Software Maintenance anergmeeringl999;130-138.
12. K. Rangaraajan, P. Eswar, T. Ashok. Retesting C++ daBsec. Nineth Annual Software Quality Weldlay 1996.
13. F. . Vokolos, P. G. Frankl. Empirical evaluation of tleetual differencing regression testing technigemc. IEEE Int’l Conf.
Software Maintenanc2998;44-53.
14. Y.F.Chen, D. S. Rosenblum, K. P. Vo. TestTube: a systeselective regression testirgroc. Int'l Conf. Software Engineering
1994,211-220.
15. M. J. Harrold, J. D. McGregor. Incremental testing of O&ss structuresRroc. Int'l Conf. Software Engineering992;68—80.
16. D. E. Perry, G. E. Kaiser. Adequate testing and OO progriag. J. Object-Oriented Programmingan/Feb 199(2(5):13-19.
17. P. T. Devanbu. GENOA - a customizable, language and-@ndtindependent code analyzéroc. Int'l Conf. Software
Engineeringl992;307-317.
18. M. PriestleyPractical Object-Oriented Desigflst edn). McGraw-Hill Book Co., New York, 1996.

Yoon Kyu Jangis a Ph.D. student of Software Engineering in the DepartroEBlectronic Engineering
and Computer Science at the Korea Advanced Institute ofn8ei@and Technology(KAIST) in Korea.
She received her B.S. degree in computer science from the&SKAKorea, in 1996 and M.S. degree
in computer science from the KAIST, Korea, in 1998. Her redeanterests include regression testing,
software maintenance, and object-oriented testing.

Malcolm Munro is a Professor of Software Engineering in the Departmentwwh@uter Science at the
University of Durham in the UK. He has been an active researithsoftware maintenance since 1987.
His current research interests are in program comprehgrsftware visualization, reverse engineering,
and reuse-reengineering. He has served on the program gadizing committees for international
conferences. Malcolm is a founder member of the Centre fétiaoe Maintenance and in the Research
Institute for Software Evolution, both located at the Umsiy of Durham. His Ph.D. from the University
of Durham is in Computer Science.

Yong Rae Kwonis a Professor of Software Engineering in the Departmenti@ftEbnic Engineering
and Computer Science at the Korea Advanced Institute ofnSeiand Technology(KAIST) in Korea.
He received B.S. and M.S. degrees in physics from Seoul Natidniversity, Korea, in 1969 and 1971
respectively, and a Ph.D. in physics from the University itlsBurgh in 1978. He taught as an instructor
at Korea Military Academy from 1971 to 1974. He was on the téchl staff of Computer Science
Corporation from 1978 through 1983 working on the groundwsupsoftware systems for NASAs satellite
rojects. He joined the Faculty of Computer Science of KAI&T1B83. His research interests include
verification of real-time parallel software, object-oried technology for real-time systems and quality

assurance for highly dependable software.

w N

Copyright(© 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Prac2000;00:1-2
Prepared usingmrauth.cls

([

A REGRESSION TESTING OF C++ PROGRAMS 11

List of Figures
1 Primary Casesd4 and theirimpacts 12
2 Primary Cases58 and theirimpacts 13
3 APrototype implementation of impactanalysis oL 14
4 Theexample programs i i i e e 15
Copyright(© 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Prac2000;00:1-2

Prepared usingmrauth.cls

12 Y. K. JANG M. MUNRO Y. R. KWON

([

—|_legend]

[] nonvirutal member function
[C__J] virtual member function

Q data function
[=[] invocaton
[}»(_) datadefinition

OD data use

[
call (m) : a set of functions that invoke a functioritmindirectly
mwheni=0

interaction(A, B) : a set of interactions which exist from functions
withinA to functions withinB, whereA andB are sets of
functions

i n-1
n: the smallest number such tleall (m) =call (M)

new a set of interactions which are indicatechey

Redefi ned menber nB() is added

.

Base

Base

(a) Notations used in this figure

Redefi ned menber nB() is del eted

[mOf——{m0)]

[mOf——{ 0]

T

Deri ved

Fy = Uin:0 call i(added menber function m

F = U.%interaction(call “my, call T

(b) Case 1: scope change due to addition of a

Deri ved

e
Base Base
[mOf——{m80] [mO}——|n80)]
T new
Deri ved 9
()

Fy = U, call i(del eted menber function m

F = UMl interaction(call “my, call ‘Th) U new

(c) Case 2: scope change due to deletion of a member

member function function
Virtual redefined menber nB() is invoked Virtual redefined menber nB() is added
—= —
Base Base Base Base
new
(mo] [m0] [mO [mOf——{mo0] [m0 8]

Deri ved

Fu = UL

F o= Uin':é interaction(call i(n, call ‘1) U new

(d) Case 3: new interaction due to addition of a virtual call

Deri ved

cal | i(changed nmenber function m

Deri ved
Fy = n _call i(added menber function m

i=0
F o= Uin':éinteraction(call m, call ‘thy)

(e) Case 4: new interaction due to addition of a
virtual member

Figure 1. Primary Casess#4 and their impacts

Copyright(© 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Prac2000;00:1-2

Prepared usingmrauth.cls

A REGRESSION TESTING OF C++ PROGRAMS 13

([

The signarue of nmenber n8() is changed

—

Menber nB() is changed to virtual

Base

()|

Base
| () f——8Q] MmO

Deri ved Derived
(O] [o] [meQ)]

Fy = in=l call i(changed menber function m Fu = Ui”:0 call i(changed nenber function m
U1 interaction(call ‘(m, call ‘th)) Unew F =U"DLinteraction(call (m, call ‘)

(b) Case 6: creation of a virtual call due to interface

(a) Case 5: new interaction due to change to virtual
change

The use of dl1 is changed

The definition of dl is changed

= Ui":o call i(changed use function m

. Fu =
Fbo = U o cal | ‘(changed definition function m Fo- Ui”;(l, i nteracti on(cal | i(")v cal | iﬁﬁ)
F = UM interaction(call (m, call ‘thy) U changed definition-use pairs
U changed definition-use pairs Foe= @ set of definition functions of the data
a set of definition functions of the data F = FU F(m data menber defined by m case 7)

Foer
(c) Case 7: change to data definition (d) Case 8: change to data use

Figure 2. Primary Cases<8 and their impacts

J. Softw. Maint: Res. Prac2000;00:1-2

Copyright(© 2000 John Wiley & Sons, Ltd.
Prepared usingmrauth.cls

14 Y. K. JANG M. MUNRO Y. R. KWON

([

Graph Tool

Input or Output

Existing Subsystem

New Subsystem

Process Flow

LY

9% Graph Tool

Old CIC++ Program
source files| Prepossor analyzer
—— [Impact
—> U analyzer
New C/C++ Program
source files Prepossor analyzer

Graph Tool Visualization

Figure 3. A Prototype implementation of impact analysis

Copyright(© 2000 John Wiley & Sons, Ltd.

Prepared usingmrauth.cls

J. Softw. Maint: Res. Prac2000;00:1-2

A REGRESSION TESTING OF C++ PROGRAMS 15

([

class X {
protected :
int di;
class X { - float d2;
protected : public :
int di; voi d x1();
fl oat d2; int x2();
public : virtual void x3();
void x1();] voi d x4();
int x2(); b
xg{&ugh(;/.ol d x30); class Y : public X {
}: ' private:
’ b int d3;
public:
cl ass YprP\L;g“aC X { void x1();
int d3; it x2();
publi c: voi d x3();
void x1(); virtual void yi();
int x2(); void y2(); '
virtual void yi(); voi d y3();
void y2(); int ya();
void y3(); };
}: int y4(); void X :x1() { dl = 5: x2(); }
void x::x1() { d1 =5 x2(); } ot XX (X3 reurn 02)
int X:x2() { x40); return dz2; } void X :xa x30): 1 ;
vod XA f o) A (BT e ST)
-) t ;
void Y:ix1 d1 = 10, d3 = 11; } {,g.dyxy(z){xy() v20:)
:/gitdY;(: X)Z/(Z) { X;() y2(); } void Y::y3 g E xl8; y4(); }
vord vy i daos vord Y x30) {48 = a1 vi();)
int Y::y4() { return 0; } int Y::y4() { x3(); returnO
(a) The old version of the program: ex1 (b) The new version of the program: ex2
Figure 4. The example programs
Copyright(© 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Prac2000;00:1-2

Prepared usingmrauth.cls

16 Y.K.JANG M.MUNRO Y.R.KWON

List of Tables
I Types of change and changes in same changescope 17
Il Examples of nodes and edges.2dgand.cmpfiles, 18
Il Patterns for addition of a new member function in théf file 19
IV The comparison result afx1.cmmndex2.cmgdiles by usingdiff 20
V The firewall of the exampleprogramo ... 21
VI The firewall for deletion of a memberfunction 22

Copyright(© 2000 John Wiley & Sons, Ltd.

J. Softw. Maint: Res. Prac2000;00:1-2

Prepared usingmrauth.cls

([

A REGRESSION TESTING OF C++ PROGRAMS 17

Table I. Types of change and changes in same change scope

Changes at the level of a member function

Changes in same@elsanpe

Addition of a new member function

Deletion of a member function

Change to virtuality:

Virtual to non-virtual

Non-virtual to virtual

Change to visibility:

Public to protectegprivate,
protected to private

Private to protectetpublic,
protected to public

Change to signature

Change to implementation:
Addition/deletion of invocation

Addition/deletion of definitiofuse
to the value of a data member

When a member function theat] it can invoke existing member functions or definge
the value of data members. Also, other member functions eamddified in order to
invoke the added function at the same time.

When a member function is ddleits implementation is deleted and the part
implementation of other member functions which have ingoltee deleted function are
deleted at the same time.

If virtual-redefined member funatie were declared in the derived classes of the class in

which the changed member function is declared, the "vittk@ywords of these functiong
are deleted.

If redefined member function were eed in the derived classes of the class in which

the changed member function is declared, the "virtual” kesds can be added to thes
functions.

Member functions, which have invoked the changedtion but do not
have access authority to that any naoeanodified in order to remove the invocation.

Other member functions can be modified in order tokevthe changed

function if they have access authodtthat.
The implementation of the member functions, which havekeadothe changed function
must be changed in order to fit the signature of the changexdifum

There is no other changes in same change scope.

There is no other changes in same change scope.

Changes at the level of a a data member

Changes in same clwapge s

Change to type

Change to visibility:
Public to protectegprivate,
protected to private

Private to protectetpublic,
protected to public
Addition of a new data member

Deletion of a data member

The definitignse member functions are changed to be compatible with tiae da

Member functions, which have definadsed the changed data

and do not have access authority taathatmore, are modified in order to remove the
usage to the data.

Member functions can be modified in order to defirse the value of the changed datg
if they have access authority to that.

Member functions can be modifiesider to defin¢use the value of the added data.

Member functions that have defiurget the value of the deleted data must be chan
in order to remove their use of the data.

Changes at the level of a class

Changes in same change scope

Addition of a new class

Deletion of a class

Since the addition of a class and tdéiad of its members are considered different typy
of changes, these two changes cannot happen at the samAlsmeany relation betweer]
this class and other classes is not added at the same time.

Since the deletion of a class and theidelet its members are considered different typy
of changes, these two changes cannot happen at the sam# tiimelass must not havg
any relation with other classes before being removed.

i

S

ged

D

Changes at the inheritance relation

Changes in same change scope

Addition of an inheritance relation

Deletion of an inheritance relation

When a new inheritanekation is added, the implementation of member functiong
the derived class can be modified in order to use newly irdeeritembers from the bas|
class.

Since member functideslared in derived classes cannot use any member dectar

n

edi

the base class, their corresponding implementation isgethn

Copyright(© 2000 John Wiley & Sons, Ltd.
Prepared usingmrauth.cls

J. Softw. Maint: Res. Prac2000;00:1-2

18 Y. K. JANG M. MUNRO Y. R. KWON

(i

Table Il. Examples of nodes and edgesddgand.cmpfiles

(a) member function node:
(+Node
[m][visibility][virtuality][type]qualifier::name[defned class]
(-Node

(b) data membernode:
(+Node
[d][visibility][type]qualifier::name[defined class]
(-Node

(c) invocation relation edge (n1 invokesm?2):
(+Edge
“member functionm1 node” “member functiomn2 node”
(Name “c”
(-Edge

(d) define/use relationedge tn1 defines or usesl):
(+Edge
“member functionm1 node” “data membed1 node”
(Name “d” or “u”
(-Edge

(e)inheritance relation edge €1 inheritsc2):
(+Edge
“classcl node” “classc2 node”
(Name “I”
(-Edge

Copyright(© 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Prac2000;00:1-2
Prepared usingmrauth.cls

([

A REGRESSION TESTING OF C++ PROGRAMS 19

Table Ill. Patterns for addition of a new member functionha diff file

Patterns in thediff file

firewall construction algorithm

(A)...a...
(a)) (+Nod¢
y (Nam@ "[m]"
) (-Node
(b)) (+Edge ADDED FUNCTION "[d]
) (Directed
) (Name "d”
) (-Edge
(c)) (+Edge ADDED FUNCTION "[d]
) (Directed
Y (Name "u”
) (-Edge
(d)) (+Edge ADDED FUNCTION "[m] ... [nonvirtual] ... "
) (Directed
) (Name "c”
) (-Edge
(e)) (+Edge ADDED FUNCTION "[m] ... [virtual] ... "
) (Directed
Y (Namé "c”
) (-Edge
(f)) (+Edge "[m] ” ADDED FUNCTION
) (Directed
) (Name "c”
) (-Edge
B)...c...
(9) ((+Edge "m1” "m2, the redefined type of ADDED FUNCTION"
((+Edge "m1” ADDED FUNCTION

o firewall algorithm 1
o If it is virtual redefined,
Case 1: firewall algorithm 2.(d)

e Case 7: firewall algorithm 2.(a)

e Case 8: firewall algorithm 2.(b)

o firewall algorithm 3.(a)

o firewall algorithm 3.(b)

o firewall algorithm 4

e Case 4: firewall algorithm 2.(c)

Copyright(© 2000 John Wiley & Sons, Ltd.
Prepared usingmrauth.cls

J. Softw. Maint: Res. Prac2000;00:1-2

20 Y. K. JANG M. MUNRO Y. R. KWON

(i

Table V. The comparison result ek1l.cmmndex2.cmdiles by usingdiff

(a) 15a16
) <Name "[m][public][virtual][void Y::()]Y::x3[Y]"
63a65,8
(b)) <+Edge "[m][public][nonvirtual][int Y::()]Y::y4[Y]" "[m][pub lic][virtual][void Y::()]Y::x3[Y]"
) (Directed
(Name "c”
(c)) (+Edge "[m][public][virtual][void Y::()]Y::x3[Y]" "[d][priva te][int]Y::d3[Y]"
) (Directed
) (Name "d”
(d)) (+Edge "[m][public][virtual][void Y::()]Y::x3[Y]" "[d][priva te][int]Y::d3[Y]"
) (Directed
) (Name "u’
(e)) (+Edge "[m][public][virtual][void Y::()]Y::x3[Y]" "[d][prote cted][int]X::d1[X]"
) <D|recteq
) (Name "u
()) (+Edge "[m][public][virtual][void Y::()]Y::x3[Y]" "[m][publi c][nonvirtual][void Y::()]Y::y2[Y]"
) <D|recteq
) (Name "c
(9)) (+Edge "[m][public][virtual][void Y::()]Y::x3[Y]" "[m][publi c][nonvirtual][void Y::()]Y:y3[Y]"
) (Directed
) (Name "c”

Copyright(© 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Prac2000;00:1-2
Prepared usingmrauth.cls

([

A REGRESSION TESTING OF C++ PROGRAMS 21

Table V. The firewall of the example program

Changes Unit firewall Integration firewall
(a) A new member function Y::x3 is added. Y::x3, X::x4, Xox¥::y3, X:x2 - X::x4,
Itis a virtual redefined function. Xix2, Xix1 Xix1 - Xix2

(b) Y::x2 invokes Y::x3. Y::x2 Y:x2 - Yix3

(c) Y::x3 defines the value of Y::d3. Y::x3, Y:x2, Y:X2 - ¥3, Yiyd - Yux3, Yiy3 - Yiyd
Y::y4, Y:y3 definition conflict: Y::x1 - Y::x3

(d) Y::x3 uses the value of Y::d1. Y::x3, Yix2, Yix2 - Yix¥iyd - Yix3, Yiy3 - Yiy4,
Y:y4, Y:y3 Xix1 - Yix3, Yix1 - Yix3

definition conflict: Y::x1 - Y::x3
(e) Y::x3 invokes Y:yl. - Y:x3- Yyl
(f) Y::y4 invokes Y::x3. Y:y4, Y:y3 Y:y3-Yiy4

Copyright(© 2000 John Wiley & Sons, Ltd.
Prepared usingmrauth.cls

J. Softw. Maint: Res. Prac2000;00:1-2

22

Y. K. JANG M. MUNRO Y. R. KWON

(i

Table VI. The firewall for deletion of a member function

the number of member functions

the number of classes

classes in in_ _ in _ to che_c_k in the firewall in the fireyvall
this unit integration definition from our from class firewall
class firewall firewall conflicts approach approach

Application 7 2 0 0 1 4
Collection 2 5 3 0 4 10
Collectionlterator 2 5 5 0 3 1
ControlPoint 6 20 22 0 6 16
CreationTool 7 4 2 2 2 5
DiagramEditor 8 3 0 0 1 1
Display 9 30 23 0 11 21
DOSKeyboard 2 0 0 0 0 1
Drawing 2 3 0 0 3 8
Element 11 20 20 1 6 15
Ellipse 3 11 11 0 5 3
EllipseTool 2 0 0 0 0 2
EventHandler 1 0 0 0 0 2
GraphicsScreen 9 0 0 0 0 1
Keyboard 2 1 0 0 1 3

Line 2 0 0 0 0 3
LineTool 2 0 0 0 0 2
Mouse 15 9 0 0 2 4
MSMouse 15 10 15 8 2 1
Node 0 0 0 0 0 11
Poller 1 0 0 0 0 2
Rectangle 1 0 0 0 0 3
RectangleTool 2 0 0 0 0 2
SelectionTool 4 3 0 6 3 2

Tool 4 4 0 0 1 7
ToolManager 1 3 0 0 2 8

Copyright(© 2000 John Wiley & Sons, Ltd.
Prepared usingmrauth.cls

J. Softw. Maint: Res. Prac2000;00:1-2

