
JOURNAL OF SOFTWARE MAINTENANCE: RESEARCH AND PRACTICE
J. Softw. Maint: Res. Pract.2000;00:1–2 Prepared usingsmrauth.cls [Version: 2001/03/16 v1.01]

Research

An Improved Method of
Selecting Regression Tests for
C++ Programs

Y. K. Jang1�, M. Munro2, and Y. R. Kwon11 Department of Electronic Engineering and Computer Science, Korea Advanced Institute of Science and
Technology, 373-1, Kusong-dong, Yusong-gu, Taejon, 305-701, Korea2 Department of Computer Science, University of Durham, Science Laboratories, South Road, DURHAM,
DH1 3LE, U.K.

SUMMARY

This paper describes an impact analysis technique that identifies which parts should be retested after a system
written in C++ is modified. We are interested in identifying the impacts of changes at the class member-level by
using dependency relations between class members. We try tofind out which member functions need unit-level
retesting and which interactions between them need integration-level retesting. To get precise analysis results,
we adopt a technique that classifies types of changes and analyze the impact for each type. Primitive changes,
changes which are associated with C++ features, are first defined and their ripple effects are computed in order
to construct a firewall for each type of changes systematically. We have applied our prototype tool to a real
system with small size. This case study shows some evidence that our approach gives reasonable efficiency and
precision as well as being practical for analyzing change impacts of C++ programs.

KEY WORDS: regression testing; change impact analysis; object-orientation; firewall; dependency relation

1. Introduction

Whenever a program is modified, it must be retested to ascertain whether changes have been made correctly
and whether those changes have caused any adverse effect on its behavior. However, testing is a complicated
and expensive activity: some studies have shown that more than 50% of development effort in the life cycle
of a software program is spent on testing and when maintenance is included, nearly two thirds of the
development effort[1, 2]. Therefore, several selective retesting techniques have been developed in order to
reduce the time and effort of retesting.

Some essential issues in selective retesting techniques are: (1) how to identify changes of a program
and the affected components, (2) how to maintain test suitesduring evolution of a program, (3) what test
strategy should be used to retest these affected components, and (4) how to select reusable test cases and
generate new ones if necessary[3]. Among these issues, we focus on change identification and impact
analysis.

Identifying the impacts of changes must be reasonably precise so that we can isolate as many parts of
the program as possible from retesting[4]. On the other hand, there is an observation that the more precise
an approach is, the less it becomes efficient[5]. For example, an approach which identifies statements to
be retested is more precise than an approach which chooses functions as a retesting unit, but the former
can be less efficient than the latter. Moreover, it must be supported by automated tools because retesting is
a time consuming activity which requires dependency information between components of a program. In�Correspondence to: Y. K. Jang, Department of Electronic Engineering and Computer Science, Korea Advanced Institute ofScience
and Technology, 373-1, Kusong-dong, Yusong-gu, Taejon 305-701, Korea. E-mail: ykjang@salmosa.kaist.ac.kr

Copyright c
 2000 John Wiley & Sons, Ltd.

2 Y. K. JANG M. MUNRO Y. R. KWON

this paper, we aim to devise an approach which maintains a balance between precision and efficiency and
which supports automation.

Object-oriented languages such as C++ and Java include concepts such as inheritance, polymorphism,
and dynamic binding. These features not only result in more complex dependencies between program
entities but also make dependency analysis more difficult[6]. We have previously developed an approach
for analyzing change impact of a C++ program[7]. Although our approach was basically based on the class
firewall method[8], but we are interested in identifying which member functions(of a class instead of a
class on a while) had to be retested after modification. This paper systematizes our previous approach in
identifying change impact of C++ programs in an effort to select as a small number of retesting sets as
possible and discusses on a tool which implements our approach. We first define changes associated with
C++ features as primitive changes and compute their impacts. Then, we classify changes that can occur
in a C++ program and construct a member-level firewall for each type of classified changes by using the
firewalls of primitive changes. We also describe the resultsof a case study using a small example program
to show whether our approach provides reasonable precisionand efficiency in assessing the impacts of
changes. Our approach regards a C++ program as our target program because it is being widely used, but
it can be made applicable to other object-oriented languages such as Java.

The rest of our paper is organized as follows. Section 2 presents previous researches related to regression
testing and change impact analysis. Section 3 describes primitive changes and their firewalls. It also
presents changes which may occur in a C++ program and how to construct their firewalls by using primitive
cases. In Section 4, we explain the structure of our tool and how our tool works using a small example.
Section 5 describes the results of a case study with a software system written in C++. Section 6 summarizes
contributions of this work and suggests further research directions.

2. Related Works

Some approaches for analyzing change impact of object-oriented programs have been developed.
Rothermel and Harrold[9] used dependence graphs that represent both control dependency and data
dependency at the statement-level in an abstracted form of classes and application programs. They
constructed dependence graphs for both the original program and the modified program, and then observed
the differences between the two graphs by comparing corresponding nodes during the graph-traversal.
Although the results of impact analysis might be very precise, data flow analysis is often restricted to
the intra-procedural level and its computational complexity may be costly. Therefore, application of this
approach seems to be restricted to programs with a small size. On the other hand, Kung et al.[8] introduced
a notion of class firewall based on three dependency relations between classes - inheritance, association,
and aggregation - to identify the effects of a class-level modification. This approach is less precise than that
of Rothermel and Harrold[9], but more efficient for large software systems. The fundamental difference
between these two approaches is the granularity of retesting units and dependency information used in
analysis. While Rothermel and Harrold regarded a statementas a retesting unit and used the statement-
level dependency information, Kung et al. considered a class a unit of retesting and used the class-level
dependencies. In our approach, we regard a member function as a retesting unit and use dependency
information at the member-level because it is expected to give a reasonable precision and efficiency in
analyzing change impacts.

Some approaches have categorized the code changes that may be made to object-oriented software and
analyzed how these changes affect other classes in the system in order to obtain reasonable precision and
efficiency[10, 5, 11]. Kung et al.[10] provided a regressiontest model that consists of object relations and
the interface, control structure of a member function in a class, and relationships to other data items and
function members of classes. They dealt with data change, method change, class change, and class library
change and described how to identify each type of change. However, their computed firewall was restricted
to identifying the effect of a class change at the class-level; impact analysis for other change types is needed.
Li and Offutt[5] first analyzed how encapsulation, inheritance, and polymorphism would affect the impacts
of changes and described algorithms to identify potentially affected classes by using transitive closure
dependency relations between class members. They noted that it is possible to optimize their algorithms by
categorizing the possible code changes and by giving each change an attribute according to the degree of

Copyright c
 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;00:1–2
Prepared usingsmrauth.cls

A REGRESSION TESTING OF C++ PROGRAMS 3

its influence on other classes. Although this approach is more precise than that of Kung et al., there exists a
room for reducing the impacts identification efforts because they use transitive closure dependency without
considering types of changes; retesting the changed class is not always necessary and sometimes, changes
may not be propagated to other parts which have transitive closure dependency[12, 11]. Furthermore, they
did not consider changes to inheritance relations and virtual member functions. Our approach basically
follows this approach, but we hope to identify change impacts more precisely by utilizing information on
the types of changes.

Chaumun et al.[11] defined 63 changes which can be made in a class, a member function, and a variable
and used association, aggregation, inheritance, and invocation links to analyze the impact with. Their
experiment with a small C++ program showed that there was no impact for 22 of these changes, there
was only local impact for 4 changes, and there was impact in other classes for 37 changes. Rangaraajan et
al.[12] assumed that any change to a C++ class must be a permutation from a finite set of atomic changes,
minimal units that the program compiles and links. As a criterion to judge whether a member function
needs to be retested after a sequence of atomic changes, theyused the information of all symbols this
function binds to statically. They all found that some changes do not require retesting.

Vokolos and Frankl[13] have presented a textual differencing technique that compares source files from
the old and the new versions of a program in written C. They used diff , the file comparison program,
as a comparison tool in order to determine the differences inthe program texts. They showed that
their approach is adequately effective in practice throughempirical results. On the other hand, Chen
et al.[14] have developed a regression test selection tool in which diff identifies modifications to the
code entities(functions, variables, types, and preprocessor macros) of a C program and their dependency
relations. It is a relatively coarse-grained analysis, butproduces a reasonable and practical tradeoff between
granuality of analysis and time/space complexity. This research showed the practicality of impact analysis
tools which are implemented usingdiff .

From the brief survey above, we observe that many of the previous approaches are often biased either by
efficiency or precision and the change impact models are often incomplete or not systematic. We also note
that retesting efforts can further be reduced by analyzing more precisely the impact of changes.

3. Change Impact Analysis

In this section, we present an approach to identifying code changes and their impacts automatically. We are
interested in identifying member functions that should be retested when a C++ program is modified. Also,
we aim at constructing a change impact model as systematically and precisely as possible for each type of
change. First, we classify types of changes and analyze the impact for each type. We define the impacts of
the changes associated with C++ features to compute a firewall for each type of changes.

3.1. Categorization of Changes

In order to identify member functions affected by changes, dependency relations such as invocation relation
between member functions, data definition=use relation between a member function and a data member,
and inheritance relation between member functions are used. Invocation means that a member function
is called by another member function. A data definition=use dependency is established when a member
function(or a global function) defines=uses the value of a data member. We call these functions definition=
use functions of the data member. In our approach, we assume that the value of a data member is used or
defined only by member functions or global functions. Regarding inheritance relation as an incremental
modification, a class member is classified intonew, recursive, andredefinedaccording as to whether it is
inherited from the parent class or not[15].

We consider levels of changes according as where these changes are made. Four levels of changes in a
C++ program are considered: changes at the level of a data member, a member function, a class, and the
inheritance relation. We explain each type of change in moredetails below.� Types of change at the level of a member function:Changes to a member function can be made in

three different ways: addition or deletion of a member function, changes to its interface, and changes

Copyright c
 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;00:1–2
Prepared usingsmrauth.cls

4 Y. K. JANG M. MUNRO Y. R. KWON

to its implementation. Therefore, addition of a new member function, deletion of a member function,
changes of virtuality, visibility, signature, and a changeto the implementation are regarded as types
of change at this level. As a change to the implementation, wetake into consideration changes to
data definition=use relation and invocation relation because we use the member-level dependency
relations.� Types of change at the level of a data member:For a data member, its visibility or data type can
be changed and a new data member may be added, or an existing data member may be deleted.
Changing the value of a data member is considered a change to the implementation of its definition
member function that modifies the value of the data; therefore, this type of change is not a change
type at this level.� Types of change at the level of a class:Changes at the class-level are addition of declaration of a
new class and deletion of declaration of an existing class. Note that changes are made at different
levels. For example, if we want to add a new classA with a member functionm, two changes must
be made; first,A is added, which is a change at the class-level and then,m is added toA, which is a
change at the member function-level.� Types of change at the inheritance relation:These changes include adding or deleting an
inheritance relation between two existing classes. When a new inheritance relation is added, the
implementation of member functions in the derived class canbe modified in order to use newly
inherited members from the base class. On the other hand, if an inheritance is deleted and the member
functions in the derived class can no longer use inherited members, their implementation must be
changed.

Table I lists a total of 30 types of changes. We are not convinced whether our classification about changes
is complete or not, but included all changes that can be generally made. Basically, when one type of change
is made to a system and impact analysis for that change is performed. However, we also allow restricted
multiple types of change at the same time. As an example, whena member functionm1 is added(addition of
a member function), it can invoke existing member functions(change to implementation ofm1) and another
member functionm2 can be modified in order to invoke the added function(change to implementation ofm2). We define these multiple types of change aschanges in the same change scope. Table I also shows
changes in the same change scope as each type of change. Whenever a program undergoes several changes
in the same change scope, we calculate change impacts using the algorithms to be discussed in Section 3.3.

[Table 1 about here.]

3.2. Impact Analysis for Primitive Changes

In software systems written in a procedural language, dependencies between functions or data tend to be
explicit. However, a C++ program includes features that might cause implicit dependencies. Access control
to members encapsulated in other classes creates more complex dependencies along with inheritance
relations which allow members in a derived class to use members defined in its parent classes. Moreover,
dynamic binding makes invocation relations between memberfunctions unclear because it allows the
decision on implementation to be delayed until run-time. Wecall changes associated with these C++
featuresprimitive changesand define the following eight primitive changes.� Changes to the scope of a member function:The scope of a member function is defined as member

functions which it invokes and as data members whose values are defined and used. When a member
is added or deleted, the scope of other member functions which interact with it can be changed
implicitly as well as explicitly. Cases of addition and deletion of a member function are defined as
Cases 1 and 2, respectively.� Changes related to dynamic binding:When a virtual member function is called, it is difficult to find
out which function is actually being invoked among it and itsvirtual-redefined functions. Whenever
there exist implicit dependencies from their calling functions to virtual functions, those dependencies
should be retested. We define four more primitive cases.

– Case 3: Invocation to a virtual member function is added.

Copyright c
 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;00:1–2
Prepared usingsmrauth.cls

A REGRESSION TESTING OF C++ PROGRAMS 5

– Case 4: An implicit invocation can be raised by an existing dependency when a virtual-
redefined member function is added to a derived class.

– Case 5: When the virtuality of a member function in a base class is changed(a virtual member
function is changed into a non-virtual function or vice versa), an implicit invocation with a
redefined member function in its derived class can be created.

– Case 6: A new invocation can be created because of the change of a member function’s
interface in a base or a derived class.� Changes to data definition=use:Case 7 is a change to definition of a data member in its definition

member function and Case 8 is a change to use of a data member inits use member function. To
assess the impacts of these changes, we use data definition=use dependencies that are shown at the
member-level. Such information is less precise than data dependency at the statement-level, but it
helps to avoid the complexity of analyzing data-flow at the statement-level.

The impacts of changes in the same change scope which were defined in Section 3.1 is composed of
those primitive changes. First, we find out the impacts of primitive changes in order to identify a member-
level firewall for a type of change. Figures 1 and 2 summarize the impacts for each of primitive change.
A firewall(F) is one of three types: a unit firewall(FU), a set of member functions which require unit-
level retesting, an integration firewall(FI), a set of interactions between member functions which require
integration-level retesting, and a definition-conflict check firewall(FDEF), a set of member functions which
need to check whether their definitions for it are conflicting, when they define the value of a given data
member.

We briefly explain the impacts of some primary cases. Figure 1(b) shows an example of Case 1: an
invocation fromDerived:m2 toBase:m3 is changed to the invocation fromDerived:m2 toDerived:m3
when a new member functionm3 is added to a classDerived. Then, the functionality ofDerived:m2 is
changed because it invokesDerived:m3 and it might have an influence on other member functions which
invoke it. Therefore, both the member function added and other member functions that call it directly or
indirectly need retesting at the unit-level and the integration-level.

Figure 1(d) describes Case 3 in whichBase:m1 has a new implicit interaction withDerived:m3 when
the program is changed such that an invocation fromBase:m1 to a virtual member functionBase:m3 is
added. In this case,Base:m1 and member functions which invoke it are included inFu becauseBase:m1
might have a different functionality. Also, the interactions between them and newly created interactions
require integration-level retesting.

Figure 2(c) shows an example of Case 7 in which a definition member functionBase:m1 of a data
memberd1 modifies the value ofd1. Then, the definition member functions ofd1 must be tested at the
integration-level in order to check whether new definition for the value ofd1 is in conflicts with other
definitions or not[16]. Also, we must test the usage of new definition to confirm that this change is correct.
As a way of identifying the impacts of definition=use of data, we usea changed definition-use pair(whenm1 changes the value ofd1 orm2 modifies the use ofd1, a pair ofm1 andm2 is a changed definition-use
pair). We assume that the usage of the changed definition is properly tested if there is no error between
the changed definition and any use of the data member. It is less precise than data flow analysis at the
statement-level, but it is more efficient, and still gives a reasonable precision. We do not explain other
primitive cases shown in Figures 1 and 2 because they are similar to cases described before. More detailed
explanation can be found in [7].

[Figure 1 about here.]

[Figure 2 about here.]

3.3. Impact Analysis for Each Type of Changes

The firewall for each type of changes is calculated by using the firewalls of primitive changes developed
earlier. The complete algorithms for constructing them have been explained previously [7]. For purposes
of illustration, we describe how to construct a firewall whena member function is added:

Copyright c
 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;00:1–2
Prepared usingsmrauth.cls

6 Y. K. JANG M. MUNRO Y. R. KWON

Addition of a member function: If an added member function defines(uses) the value of a data member,
it is supposed that the added function has changed the definition(use) of the data. In this case, a
firewall is constructed by combining the firewall of Case 7(Case 8) and itself.FU (m, d,
ase 7),FI(m, d,
ase 7), andFDEF (m, d,
ase 7) indicateFU , FI , andFDEF of the Case 7 respectively,
wherem is a modified definition member function of a data memberd. On the other hand, if a
redefined or virtual-redefined new function is added to a derived class, new dependencies such as the
Cases 1 or 4 can be created. Then, the firewall is combined withthe firewalls,FU (m,
ase1(4)) andFI((m,
ase1(4)), wherem is the added member function.

When an added function uses virtual member functions, it is regarded as a function which has been
modified in order to invoke virtual functions like Case 3. Thus, its firewall is used to identify its
impacts. Also, some member functions can be modified in orderto invoke the added function.
In this case, member functions which invoke the added one directly or indirectly need unit-level
retesting and their interactions need integration-level retesting. The algorithm constructing firewall
for addition of a member function is summarized as follows:

1. Let an added member function bemadd. Then,FU = FU [fmaddg
2. If madd is a definition member function of a data memberd,

(a) FU = FU [FU(madd; d;
ase 7)
(b) FI = FI [FI(madd; d;
ase 7)
(c) FDEF = FDEF [FDEF (madd; d;
ase 7)

3. If madd is a use member function of a data memberd,

(a) FU = FU [FU(madd; d;
ase 8)
(b) FI = FI [FI(madd; d;
ase 8)
(c) FDEF = FDEF [FDEF (madd; d;
ase 8)

4. If madd is a redefined or virtual-redefined member function,

(a) FU = FU [FU(madd;
ase 1)
(b) FI = FI [FI(madd;
ase 1)

5. If madd is a virtual-redefined member function,

(a) FU = FU [FU(madd;
ase 4)
(b) FI = FI [FI(madd;
ase 4)

6. If madd invokes a non-virtual member functionmj ,
(a) FI = FI [intera
tion(fmjg; fmaddg)

7. If madd invokes a virtual member functionmj ,
(a) FU = FU [FU(madd;
ase 3)
(b) FI = FI [FI(madd;
ase 3)

8. If mj invokesmadd,

(a) FU = [ni=0
alli(mj)
(b) FI = [n�1i=0 intera
tion(
alli(mj);
alli+1(mj))

4. Prototype Implementation

We have developed a prototype system which implements our approach and conducted a case study to
show its practicality. The results of our case study will be discussed in Section 5. First, we describe the
configuration of our prototype system and explain how the system works with a simple example.

4.1. Tool Architecture

Figure 3 shows the overall structure of our prototype system. This prototype system has been developed by
integrating the following programs:cpp, the C/C++ preprocessor;diff, the general purpose file comparison
program;gen++, an analyzer generator and a tool generation facility for C++[17], andGraphTool, a
graph layout tool developed in RISE at the University of Durham(http://www.dur.ac.uk/RISE).This system
automatically identifies the type of change and member functions potentially affected by the change. It
consists of three components: a program analyzer, an impactanalyzer, and a graph tool.

Copyright c
 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;00:1–2
Prepared usingsmrauth.cls

A REGRESSION TESTING OF C++ PROGRAMS 7

[Figure 3 about here.]

Program Analyzer: Our program analyzer was generated from the query program developed using
gen++. It takes a C++ program preprocessed bycppas input, and outputs dependency information
on the input program for impact analysis. One of the output files is.2dg in a textual graph format
for GraphTool. Another output file,.cmp, has information about entities(classes, data members, and
function members), inheritance relations, and member-level dependencies of the input program.

Impact Analyzer: After the old and the new versions of a program are processed by the program
analyzer,diff compares their.cmpfiles which contain dependency information. While Vokolos and
Frankl[13] made the source-to-source comparison withdiff , we compared dependency information
of two programs in order to determine the impacts more precisely. Although the difference in the
program texts has no impacts on dependence relation, test cases which cover this difference are
selected as reusable ones. The impact analyzer examines theoutput ofdiff to determines which type
of change is made in the old version of the program. We will briefly explain how to determine the
type of change in Section 4.2. It subsequently constructs a member-level firewall according to the
firewall construction algorithm of the identified type of change described in Section 3.3.

GraphTool: It helps us understand the structure of the subject program and dependency relations between
program entities by presenting it in a graphical form. It also compares the graphs of old and new
versions of the input program.

4.2. An Example

[Figure 4 about here.]

Figure 4 shows an example program to be used to explain how oursystem works. Figures 4(a) and 4(b)
are the old and the new versions of the program, respectively. The rectangular portion in Figure 4(b) shows
which parts of the program were changed in the old version. Inthis example, the type of change is addition
of a new member function; a member functionx3 is added to the classY andY :: y4 is changed to invoke
it. The program analyzer generates output files,ex1.cmp, ex1.2dg, ex2.cmp, andex2.2dg, which include
dependency information ofex1 andex2. These files are in the textual graph format forGraphTool, which
is composed of nodes that represent class, class member, global data=function, and function parameter and
edges that indicate dependencies between nodes. Table II(a) shows a template of a node which represents a
member function;<+Node> and<-Node> indicate the beginning and the end of definition of a node,[m℄
means that this node represents a member function,[visibility℄, [virtuality℄, and[type℄ has the interface
information about the member function,qualifier::namerepresents the name of the member function and
its qualifier, and adefined classmaintains a name of a class which defines the member function.Similarly,
Tables II(b)�(e) show a template of a node which represents a data member and edges which indicate
member-level dependencies.

[Table 2 about here.]

[Table 3 about here.]

[Table 4 about here.]

In this example,diff creates a file,ex1 ex2.diff, which includes textual differencies betweenex1.cmpand
ex2.cmp. Since the.diff file has a unique format according to the type of change, the impact analyzer can
identify which type of change was made in the program. Table III shows a pattern of a.diff file when a
new member function is added to the program. Table III(a) indicates that a new member function is added;
(b) and (c) show that the added function defines and uses the value of an existing data member, (d) and
(e) show that the added function invokes a member function, (f) shows that a member function invokes the
added one, and (g) shows that since the added function is redefined or virtual-redefined function, primary
changes such as Case 1 and Case 4 happen.

Copyright c
 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;00:1–2
Prepared usingsmrauth.cls

8 Y. K. JANG M. MUNRO Y. R. KWON

The impact analyzer first identifies the type of change; it recognizes that a new member function was
added to the new version when the format of Table III(a) is recognized, (b)�(f) are changes in the same
change scope as (a), and (g) was made additionally because of(a). Moreover,.diff includes information on
other changes that were affected by the above changes. TableIV shows theex1ex2.difffile of this example.
The impact analyzer interprets each part of this output file as follows:

(a) A new member functionY :: x3 is added.
(b) Y :: x2 invokesY :: x3.
(c) Y :: x3 defines the value ofY :: d3.
(d) Y :: x3 uses the value ofX :: d1.
(e)Y :: x3 invokesY :: y1.
(f) Y :: y4 invokesY :: x3.

Upon determining a type of change, the impact analyzer computes its firewall using the firewall
construction algorithm corresponding to that type. As shown in Table III, (a)�(f) are matched with
appropriate parts of the algorithm explained in Section 3.3. Table V shows the computed firewall of
this example. For each of (a)�(f), unit firewall and integration firewall were computed; unit firewall
includes member functions(e.g.,Y :: x3) to be retested at the unit-level, and integration firewall includes
interactions(e.g.,X :: x4� Y :: y3) between member functions to be retested at the integration-level and
interactions(e.g.,Y :: x1� Y :: x3) to be retested in order to check whether they are in conflictswith the
definition of a data member or not. In this paper, we do not address how to retest member functions and
interactions in the computed firewall.

[Table 5 about here.]

5. A Case Study

We have applied this prototype tool to a small target programin order to show its practicality. We hoped to
explore in particular, (1) whether it can identify types of change from the difference information obtained
by comparing the textual dependency of two versions of a program, and (2) whether our approach, which
analyzes the impacts according to the type of change, is applicable to a realistic software system.

The software used in our experiment is a drawing program which consists of 11 program files and 18
header files. This program defines 26 classes to support various drawing functions[18]. Without any other
version of this software available, we had to make new versions of this software by hand. For every class,
we made a new version by deleting each member function exceptits constructor or destructor at a time.
Thus, as many second versions as the member functions were created. Each version was modified to be
compiled without any error: declaration of a member function, its implementation, and the invocation from
other member functions to the deleted one were removed. We then analyzed the original version and each
new version to determine the impacts. Since theAppli
ation class included in this software has seven
member functions, seven second versions were prepared and seven firewalls were obtained as the result
of analysis for each version. We combined these results to produce one firewall because we were simply
interested in identifying how many member functions are affected by this type of change - deletion of a
member function defined in a class.

Table VI shows all the classes defined in this software and thenumber of member functions defined in
each class. The results of impact analysis for deletion of a member function consist of a unit firewall, an
integration firewall and a set of member functions for checking definition conflicts. Classes in a drawing
program can be classified into four groups as follows:� The firewall includes no class.For 10 classes(DOSKeyboard, EllipseTool, EventHandler,Graphi
sS
reen,Line,LineTool,Node, Poller,Re
tangle, andRe
tangleTool), deletion of a

member function had no impact on any other classes. We did notneed to consider this type of change
for classNode because it has no member function. Even though other classesdefined some member
functions which have their implementation, this change didnot affect other parts of the software
because no member function invokes them nor they define or usedata members.

Copyright c
 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;00:1–2
Prepared usingsmrauth.cls

A REGRESSION TESTING OF C++ PROGRAMS 9� The firewall includes only the changed class.The classDiagramEditor had an influence only
on itself. It has 8 public member functions: 2 member functions are without implementation, and 6
member functions which are used only within the classDiagramEditor.� The firewall includes classes other than.Six classes(Appli
ation,Display, Keyboard, Mouse,Tool, andToolManager) had influence on other classes, but not on themselves. Although classesAppli
ation, Keyboard, andTool have 4 member functions in their firewall, they do not affect
other classes because they include only pure virtual memberfunctions.� The firewall includes both the changed class and other classes. Nine classes(Colle
tion,Colle
tionIterator, ControlPoint, CreationTool, Drawing, Element, Ellipse, MSMouse,
andSele
tionTool) affected other classes as well as themselves.

[Table 6 about here.]

Table VI lists the number of classes included in the firewall obtained by our approach and in the firewall
obtained by the class firewall approach[3] separately. As expected, in most of classes, the size of our firewall
turned out to be smaller than that of the class firewall approach. This is understandable because isolating
their impacts according to the types of changes is more precise than the class firewall approach which
includes the impact of all types of changes. However, in the cases in which a member function was deleted
in Colle
tionIterator, Ellipse,MSMouse, andSele
tionTool classes, our approach resulted in larger
firewalls than the class firewall approach. The reason appeared to be due to association relations between
classes: our approach detected more precise association relations by analyzing dependency relations among
class members.

This case study shows that our approach works for a realisticsoftware system; it has demonstrated that
it is possible to identify a type of change from the difference information obtained by comparing textual
dependencies at the member-level of two programs and to analyze the impacts of that. A case study on
only one type of change, deletion of a member function, was conducted because creating several versions
of the target programs manually was time consuming. Therefore, it is desirable to have more empirical
results for other types of changes to have more evidence thatour approach produces reasonable efficiency
and precision.

6. Conclusions

In this paper, we described an approach which constructs firewalls at the class member-level as a
mechanism for identifying the impact of a change to a software system written in C++. Techniques for
analyzing dependencies among program statements may provide accurate impact results, but they are
applicable only for programs of a small size because of a highcost. On the other hand, methods of analyzing
at the class-level tend to select too many parts as the results of the impacts analysis even when changes are
very small in a program. In our approach, a member function was considered a unit of impact identification
to attain reasonable precision and efficiency. We attemptedto reduce retesting efforts by classifying the
types of change and identifying the impacts of each type. Although the classification of type of change
may not be complete, our classification scheme is being widely used[5, 10, 11] and we believe that it
represents the most common changes which are made in a C++ program.

We have implemented a prototype system which implements ourapproach by integratingcpp, diff,
gen++, andGraphTool. Our experiment with a small drawing program showed that ourapproach which
uses classification of changes was able to identify the type of change using the difference information
obtained by comparing dependency information of texts of the two programs, and analyze impacts of the
change. We showed that our approach identified change impacts more precisely that a class-level approach
did. Further experiments with larger systems are needed to show that our approach produces reasonable
efficiency and precision in selecting a set of retesting testcases. Comparison of our approach with other
techniques such as [5, 11, 13, 9] are also desired. This paperhas focused on the activity of change impact
analysis as a starting point of a research on regression testing. We need to consider other issues of regression
testing such as test suite maintenance, test strategy, and new test generation.

Copyright c
 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;00:1–2
Prepared usingsmrauth.cls

10 Y. K. JANG M. MUNRO Y. R. KWON

REFERENCES

1. E. Kit. Software Testing in the Real World: Improving the Process.(1st edn). Addison-Wesley, 1995.
B. P. Lientz, E. B. Swanson.Software Maintenance Management.(1st edn). Addison-Wesley, Massachusetts, 1980.

2. G. J. Myers.The Art of Software Testing(1st edn). Wiley-Interscience, New York, 1979.
3. P. Hsia, X. Li, D. C. Kung, C. T. Hsu, L. Li, Y. Toyoshima, C. Chen. A technique for the selective revalidation of OO software.

J. Software Maintenance: Research and PracticeJul/Aug 1997;9(4):217–233.
4. G. Rothermel, M. J. Harrold. Analyzing regression test selection techniques.IEEE Trans. Software EngineeringAug 1996;

22(8):529–551.
5. L. Li, A. J. Offutt. Algorithmic analysis of the impact of changes to OO software.Proc. IEEE Int’l Conf. Software Maintenance

1996;171–184.
6. N. Wilde, R. Huitt. Maintenance support for OO programs.IEEE Trans. Software EngineeringDec 1992;18(12):1038–1044.
7. Y. K. Jang, H. S. Chae, Y. R. Kwon, D. H. Bae. Change impact analysis for a class hierarchy.Proc. Asia-Pacific Software

Engineering Conference1998;304–311.
8. D. C. Kung, J. Gao, P. Hsia. Class firewall, test order, and regression testing of OO programs.J. Object-Oriented Programming

May 1995;8(2):51–65.
9. G. Rothermel, M. J. Harrold. Selecting regression tests for OO software.Proc. IEEE Int’l Conf. Software Maintenance1994;14–

25.
10. D. C. Kung, Gao, Jerry, Chen, Cris. On regression testingof OO programs.J. Systems and Software1996;32(1):21–40.
11. M. A. Chaumun, H. Kabaili, R. K. Keller, F. Lustman. A change impact model for changeability assessment in OO software

systems.Proc. IEEE Third European Conf. Software Maintenance and Reengineering1999;130–138.
12. K. Rangaraajan, P. Eswar, T. Ashok. Retesting C++ classes.Proc. Nineth Annual Software Quality WeekMay 1996.
13. F. I. Vokolos, P. G. Frankl. Empirical evaluation of the textual differencing regression testing technique.Proc. IEEE Int’l Conf.

Software Maintenance1998;44–53.
14. Y. F. Chen, D. S. Rosenblum, K. P. Vo. TestTube: a system for selective regression testing.Proc. Int’l Conf. Software Engineering

1994;211–220.
15. M. J. Harrold, J. D. McGregor. Incremental testing of OO class structures.Proc. Int’l Conf. Software Engineering1992;68–80.
16. D. E. Perry, G. E. Kaiser. Adequate testing and OO programming.J. Object-Oriented ProgrammingJan/Feb 1990;2(5):13–19.
17. P. T. Devanbu. GENOA - a customizable, language and front-end independent code analyzer.Proc. Int’l Conf. Software

Engineering1992;307–317.
18. M. Priestley.Practical Object-Oriented Design.(1st edn). McGraw-Hill Book Co., New York, 1996.

Yoon Kyu Jang is a Ph.D. student of Software Engineering in the Departmentof Electronic Engineering
and Computer Science at the Korea Advanced Institute of Science and Technology(KAIST) in Korea.
She received her B.S. degree in computer science from the KAIST, Korea, in 1996 and M.S. degree
in computer science from the KAIST, Korea, in 1998. Her research interests include regression testing,
software maintenance, and object-oriented testing.

Malcolm Munro is a Professor of Software Engineering in the Department of Computer Science at the
University of Durham in the UK. He has been an active researcher in software maintenance since 1987.
His current research interests are in program comprehension, software visualization, reverse engineering,
and reuse-reengineering. He has served on the program and organizing committees for international
conferences. Malcolm is a founder member of the Centre for Software Maintenance and in the Research
Institute for Software Evolution, both located at the University of Durham. His Ph.D. from the University
of Durham is in Computer Science.

Yong Rae Kwon is a Professor of Software Engineering in the Department of Electronic Engineering
and Computer Science at the Korea Advanced Institute of Science and Technology(KAIST) in Korea.
He received B.S. and M.S. degrees in physics from Seoul National University, Korea, in 1969 and 1971
respectively, and a Ph.D. in physics from the University of Pittsburgh in 1978. He taught as an instructor
at Korea Military Academy from 1971 to 1974. He was on the technical staff of Computer Science
Corporation from 1978 through 1983 working on the ground support software systems for NASAs satellite
rojects. He joined the Faculty of Computer Science of KAIST in 1983. His research interests include
verification of real-time parallel software, object-oriented technology for real-time systems and quality
assurance for highly dependable software.

Copyright c
 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;00:1–2
Prepared usingsmrauth.cls

A REGRESSION TESTING OF C++ PROGRAMS 11

List of Figures

1 Primary Cases 1�4 and their impacts . 12
2 Primary Cases 5�8 and their impacts . 13
3 A Prototype implementation of impact analysis 14
4 The example programs 15

Copyright c
 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;00:1–2
Prepared usingsmrauth.cls

12 Y. K. JANG M. MUNRO Y. R. KWON

call
 (
m
) :
a set of functions that invoke a function m
i
th indirectly

 m when i = 0

legend

nonvirutal member function

virtual member function

data function

invocation

data definition

data use

i

interaction
 (
A
,
B
) :
a set of interactions which exist from functions

 within
A
to functions within
B
, where
A
 and
B
 are sets of

 functions

n
:
the smallest number such that
call
 (
m
) =
call
 (
m
)

new
:
a set of interactions which are indicated by
new

i
 n
-1

(a) Notations used in this figure

 = call (added member function m)

Base

m1() m1()

Redefined member m3() is added

Derived

new

Derived

m3()

m3()m2()

m2()

m3()

FU
i

Base

FI
i i+1U n-1

i=0

Ui=0
n

= interaction(call (m), call (m))

(b) Case 1: scope change due to addition of a
member function

 = call (deleted member function m)

m3()

m3()

Base

m1()

m2()

Redefined member m3() is deleted

Base

DerivedDerived

m3()

new

FU
i

m1()

FI
i i+1U

Ui=1
n

i=1= interaction(call (m), call (m))
n-1 U new

m2()

(c) Case 2: scope change due to deletion of a member
function

 = call (changed member function m)U

U i+1i
new

i=0

I

n

= interaction(call (m), call (m))
n-1 UF

i

U

i=0

F

Base

m1()

Base

m3()

m2() m3()m3()m2()

Virtual redefined member m3() is invoked

m3() m1()
new

new

DerivedDerived

(d) Case 3: new interaction due to addition of a virtual call

 = call (added member function m)
i=0U

U i+1i

I i=0

i

F
n-1

= interaction(call (m), call (m))

n
UF

Base

m1() m3()

Base

m1() m3()

m3()m2()

m2()

new

DerivedDerived

Virtual redefined member m3() is added

(e) Case 4: new interaction due to addition of a
virtual member

Figure 1. Primary Cases 1�4 and their impacts

Copyright c
 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;00:1–2
Prepared usingsmrauth.cls

A REGRESSION TESTING OF C++ PROGRAMS 13

 = call (changed member function m)

Base

m1() m3() m1()

m2() m3() m2() m3()

Member m3() is changed to virtual

DerivedDerived

new

m3()

FU
i

Base

FI
i i+1U

Ui=1
n

i=1
n-1 U new= interaction(call (m), call (m))

(a) Case 5: new interaction due to change to virtual

 = call (changed member function m)
i=0U

U i+1

n

I i=0F
in-1

i

U

= interaction(call (m), call (m))

F

m1() m3() m1() m3()

m3()m2()m2()

The signarue of member m3() is changed

BaseBase

Derived

m3(a)

new

Derived

(b) Case 6: creation of a virtual call due to interface
change

changed definition-use pairs

 = call (changed definition function m)

 = a set of definition functions of the data

The definition of d1 is changed

Derived

Base

F n

m2()

m1()

U

m3() d1

m1()m2()

i=0

FDEF

U

FI
i i+1Ui=0

n-1
= interaction(call (m), call (m))

U

i

(c) Case 7: change to data definition

 = F(m, data member defined by m, case 7)

 = a set of definition functions of the data

 = call (changed use function m)

changed definition-use pairs

Base

The use of d1 is changed

Derived

F n

FI
i i+1Ui=0

n-1
= interaction(call (m), call (m))

U

i=0U
i

m3() d1

m1()m2()

U

d2

m1()

m2()
m4()

F

F F U
DEF

(d) Case 8: change to data use

Figure 2. Primary Cases 5�8 and their impacts

Copyright c
 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;00:1–2
Prepared usingsmrauth.cls

14 Y. K. JANG M. MUNRO Y. R. KWON

C/C++

Prepossor

Program

analyzer

diff

Graph Tool

Impact

analyzer

Impacts
 Graph Tool

Visualization

Old

source files

Visualization

legend

Existing Subsystem

Input or Output

New Subsystem

Process Flow

C/C++

Prepossor

Program

analyzer

Graph Tool
 Visualization

New

source files

Figure 3. A Prototype implementation of impact analysis

Copyright c
 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;00:1–2
Prepared usingsmrauth.cls

A REGRESSION TESTING OF C++ PROGRAMS 15

class X {
 protected :
 int d1;
 float d2;
 public :
 void x1();
 int x2();
 virtual void x3();
 void x4();
};

class Y : public X {
 private:
 int d3;
 public:
 void x1();
 int x2();

void X::x1() { d1 = 5; x2(); }
int X::x2() { x4(); return d2; }
void X::x3() { d2 = d1 + 10; }
void X::x4() { x3(); }
void Y::x1() { d1 = 10; d3 = 11; }
int Y::x2() { x3(); y2(); }
void Y::y2() { y1(); }
void Y::y3() { x1(); y4(); }
int Y::y4() { return 0; }

virtual void y1();
void y2();
void y3();
int y4();

};

(a) The old version of the program: ex1

class X {
 protected :
 int d1;
 float d2;
 public :
 void x1();
 int x2();
 virtual void x3();
 void x4();
};

class Y : public X {
 private:
 int d3;
 public:
 void x1();
 int x2();

void X::x1() { d1 = 5; x2(); }
int X::x2() { x4(); return d2; }
void X::x3() { d2 = d1 + 10; }
void X::x4() { x3(); }
void Y::x1() { d1 = 10; d3 = 11; }
int Y::x2() { x3(); y2(); }
void Y::y2() { y1(); }
void Y::y3() { x1(); y4(); }

void Y::x3() { d3 = d1; y1(); }
int Y::y4() { x3(); return 0; }

void x3();
virtual void y1();
void y2();
void y3();
int y4();

};

(b) The new version of the program: ex2

Figure 4. The example programs

Copyright c
 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;00:1–2
Prepared usingsmrauth.cls

16 Y. K. JANG M. MUNRO Y. R. KWON

List of Tables

I Types of change and changes in same change scope 17
II Examples of nodes and edges in.2dgand.cmpfiles . 18
III Patterns for addition of a new member function in the.diff file 19
IV The comparison result ofex1.cmpandex2.cmpfiles by usingdiff 20
V The firewall of the example program 21
VI The firewall for deletion of a member function 22

Copyright c
 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;00:1–2
Prepared usingsmrauth.cls

A REGRESSION TESTING OF C++ PROGRAMS 17

Table I. Types of change and changes in same change scope

Changes at the level of a member function Changes in same change scope
Addition of a new member function When a member function is added, it can invoke existing member functions or define=use

the value of data members. Also, other member functions can be modified in order to
invoke the added function at the same time.

Deletion of a member function When a member function is deleted, its implementation is deleted and the part of
implementation of other member functions which have invoked the deleted function are
deleted at the same time.

Change to virtuality:

Virtual to non-virtual If virtual-redefined member functions were declared in the derived classes of the class in
which the changed member function is declared, the ”virtual” keywords of these functions
are deleted.

Non-virtual to virtual If redefined member function were declared in the derived classes of the class in which
the changed member function is declared, the ”virtual” keywords can be added to these
functions.

Change to visibility:

Public to protected=private, Member functions, which have invoked the changed function but do not
protected to private have access authority to that any more,are modified in order to remove the invocation.

Private to protected=public, Other member functions can be modified in order to invoke the changed
protected to public function if they have access authority to that.

Change to signature
The implementation of the member functions, which have invoked the changed function,
must be changed in order to fit the signature of the changed function.

Change to implementation:
Addition=deletion of invocation

There is no other changes in same change scope.

Addition=deletion of definition=use There is no other changes in same change scope.
to the value of a data member

Changes at the level of a a data member Changes in same change scope
Change to type The definition=use member functions are changed to be compatible with the data.

Change to visibility:
Public to protected=private,

Member functions, which have defined=used the changed data

protected to private and do not have access authority to thatany more, are modified in order to remove their
usage to the data.

Private to protected=public, Member functions can be modified in order to define=use the value of the changed data
protected to public if they have access authority to that.

Addition of a new data member Member functions can be modifiedin order to define=use the value of the added data.

Deletion of a data member Member functions that have defined=used the value of the deleted data must be changed
in order to remove their use of the data.

Changes at the level of a class Changes in same change scope
Addition of a new class Since the addition of a class and the addition of its members are considered different types

of changes, these two changes cannot happen at the same time.Also, any relation between
this class and other classes is not added at the same time.

Deletion of a class Since the deletion of a class and the deletion of its members are considered different types
of changes, these two changes cannot happen at the same time.This class must not have
any relation with other classes before being removed.

Changes at the inheritance relation Changes in same change scope
Addition of an inheritance relation When a new inheritance relation is added, the implementation of member functions in

the derived class can be modified in order to use newly inherited members from the base
class.

Deletion of an inheritance relation Since member functionsdeclared in derived classes cannot use any member declared in
the base class, their corresponding implementation is changed.

Copyright c
 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;00:1–2
Prepared usingsmrauth.cls

18 Y. K. JANG M. MUNRO Y. R. KWON

Table II. Examples of nodes and edges in.2dgand.cmpfiles

(a) member function node:h+Nodei
[m][visibility][virtuality][type]qualifier::name[defined class]h-Nodei

(b) data membernode:h+Nodei
[d][visibility][type]qualifier::name[defined class]h-Nodei

(c) invocation relation edge (m1 invokesm2):h+Edgei
“member functionm1 node” “member functionm2 node”hNamei “c”h-Edgei

(d) define=use relationedge (m1 defines or usesd1):h+Edgei
“member functionm1 node” “data memberd1 node”hNamei “d” or “u”h-Edgei

(e) inheritance relation edge (
1 inherits
2):h+Edgei
“class
1 node” “class
2 node”hNamei “I”h-Edgei

Copyright c
 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;00:1–2
Prepared usingsmrauth.cls

A REGRESSION TESTING OF C++ PROGRAMS 19

Table III. Patterns for addition of a new member function in the .diff file

Patterns in the.diff file firewall construction algorithm
(A) ... a ...

(a) i h+Nodei � firewall algorithm 1i hNamei ”[m]” � If it is virtual redefined,i h-Nodei Case 1: firewall algorithm 2.(d)
(b) i h+Edgei ADDED FUNCTION ”[d]”i hDirectedii hNamei ”d”i h-Edgei � Case 7: firewall algorithm 2.(a)
(c) i h+Edgei ADDED FUNCTION ”[d]”i hDirectedii hNamei ”u”i h-Edgei � Case 8: firewall algorithm 2.(b)
(d) i h+Edgei ADDED FUNCTION ”[m] ... [nonvirtual] ... ”i hDirectedii hNamei ”c”i h-Edgei � firewall algorithm 3.(a)
(e) i h+Edgei ADDED FUNCTION ”[m] ... [virtual] ... ”i hDirectedii hNamei ”c”i h-Edgei � firewall algorithm 3.(b)
(f) i h+Edgei ”[m] ” ADDED FUNCTIONi hDirectedii hNamei ”c”i h-Edgei � firewall algorithm 4

(B) ... c ...
(g) h h+Edgei ”m1” ”m2, the redefined type of ADDED FUNCTION”h h+Edgei ”m1” ADDED FUNCTION � Case 4: firewall algorithm 2.(c)

Copyright c
 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;00:1–2
Prepared usingsmrauth.cls

20 Y. K. JANG M. MUNRO Y. R. KWON

Table IV. The comparison result ofex1.cmpandex2.cmpfiles by usingdiff

(a) 15a16i hNamei ”[m][public][virtual][void Y::()]Y::x3[Y]”
63a65,82

(b) i h+Edgei ”[m][public][nonvirtual][int Y::()]Y::y4[Y]” ”[m][pub lic][virtual][void Y::()]Y::x3[Y]”i hDirectedii hNamei ”c”
(c) i h+Edgei ”[m][public][virtual][void Y::()]Y::x3[Y]” ”[d][priva te][int]Y::d3[Y]”i hDirectedii hNamei ”d”
(d) i h+Edgei ”[m][public][virtual][void Y::()]Y::x3[Y]” ”[d][priva te][int]Y::d3[Y]”i hDirectedii hNamei ”u”
(e) i h+Edgei ”[m][public][virtual][void Y::()]Y::x3[Y]” ”[d][prote cted][int]X::d1[X]”i hDirectedii hNamei ”u”
(f) i h+Edgei ”[m][public][virtual][void Y::()]Y::x3[Y]” ”[m][publi c][nonvirtual][void Y::()]Y::y2[Y]”i hDirectedii hNamei ”c”
(g) i h+Edgei ”[m][public][virtual][void Y::()]Y::x3[Y]” ”[m][publi c][nonvirtual][void Y::()]Y::y3[Y]”i hDirectedii hNamei ”c”

Copyright c
 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;00:1–2
Prepared usingsmrauth.cls

A REGRESSION TESTING OF C++ PROGRAMS 21

Table V. The firewall of the example program

Changes Unit firewall Integration firewall
(a) A new member function Y::x3 is added. Y::x3, X::x4, X::x4- Y::y3, X::x2 - X::x4,

It is a virtual redefined function. X::x2, X::x1 X::x1 - X::x2

(b) Y::x2 invokes Y::x3. Y::x2 Y::x2 - Y::x3

(c) Y::x3 defines the value of Y::d3. Y::x3, Y::x2, Y::x2 - Y::x3, Y::y4 - Y::x3, Y::y3 - Y::y4
Y::y4, Y::y3 definition conflict: Y::x1 - Y::x3

(d) Y::x3 uses the value of Y::d1. Y::x3, Y::x2, Y::x2 - Y::x3, Y::y4 - Y::x3, Y::y3 - Y::y4,
Y::y4, Y::y3 X::x1 - Y::x3, Y::x1 - Y::x3

definition conflict: Y::x1 - Y::x3

(e) Y::x3 invokes Y::y1. - Y::x3 - Y::y1

(f) Y::y4 invokes Y::x3. Y::y4, Y::y3 Y::y3 - Y::y4

Copyright c
 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;00:1–2
Prepared usingsmrauth.cls

22 Y. K. JANG M. MUNRO Y. R. KWON

Table VI. The firewall for deletion of a member function

classes

the number of member functions the number of classes
in in in to check in the firewall in the firewall

this unit integration definition from our from class firewall
class firewall firewall conflicts approach approach

Application 7 2 0 0 1 4
Collection 2 5 3 0 4 10
CollectionIterator 2 5 5 0 3 1
ControlPoint 6 20 22 0 6 16
CreationTool 7 4 2 2 2 5
DiagramEditor 8 3 0 0 1 1
Display 9 30 23 0 11 21
DOSKeyboard 2 0 0 0 0 1
Drawing 2 3 0 0 3 8
Element 11 20 20 1 6 15
Ellipse 3 11 11 0 5 3
EllipseTool 2 0 0 0 0 2
EventHandler 1 0 0 0 0 2
GraphicsScreen 9 0 0 0 0 1
Keyboard 2 1 0 0 1 3
Line 2 0 0 0 0 3
LineTool 2 0 0 0 0 2
Mouse 15 9 0 0 2 4
MSMouse 15 10 15 8 2 1
Node 0 0 0 0 0 11
Poller 1 0 0 0 0 2
Rectangle 1 0 0 0 0 3
RectangleTool 2 0 0 0 0 2
SelectionTool 4 3 0 6 3 2
Tool 4 4 0 0 1 7
ToolManager 1 3 0 0 2 8

Copyright c
 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;00:1–2
Prepared usingsmrauth.cls

