

Copyright 2002 IEEE.

Published in the International Conference on Program
Comprehension (IWPC)

June 27-29, 2002 in Paris, France.

Personal use of this material is permitted. However
permission to reprint / republish this material for
advertising or promotional purposed or for creating new
collective works for resale or redistribution to servers or
lists, or to reuse any copyrighted component of this work
in other works, must be obtained from the IEEE.

Contact
Manager, Copyrights and Permissions / IEEE Service Center /
445 Hoes Lane / PO Box 1331 / Piscataway, NJ 08855-1331,
USA.
Telephone: + Intl. 908-562-3966.

Program Comprehension Experiences with GXL;
comprehension for comprehension

Claire Knight and Malcolm Munro
Visualisation Research Group,

Research Institute in Software Evolution.
Department of Computer Science,

University of Durham,
Durham, DH1 3LE, UK.

{C.R.Knight, Malcolm.Munro}@durham.ac.uk

Keywords: Future Research, GXL, Tools, Experience Report

Abstract
Tools are vital to support the various activities that form
the many tasks that are part of the program
comprehension process. In order that these tools are
used and useful it is necessary that they support the
activities of the user. This support must complement the
work methods and activities of the user and not hinder
them. Whilst features of good tools have been identified
tool builders do not always adhere them to. It is
important to consider whether needs have changed, and
if those desirable properties need augmenting or
revising. From experience of maintaining and
enhancing an existing program comprehension tool for
the purposes of participating in a re-engineering activity
many lessons on tool support have been learned.

1. Introduction

All too often the theories, techniques, and tools of a
computer scientist are developed in isolation from
reality. The true value and applicability of such
advances can be diminished on their introduction to
reality, if indeed that transition is ever made. Program
comprehension occurs in maintenance and development
activity. The approach to comprehension taken depends
on the task at hand. Despite the importance of program
comprehension to such a diverse and wide range of
software activities there still remains much work to be
done to improve the tools and refine the techniques that
exist today. Software continues to increase in size and
complexity. Whilst program comprehension theories
may support this growth, the tools and techniques
developed for helping maintainers have not kept up with

the speed and size of change. In developing new and
novel solutions to these problems there is a perception
problem, whereby the differences from the old solutions
are highlighted. Unfortunately these are often not the
differences that potentially improve the tool, but the
new features that are unfamiliar. Experience in carrying
out program comprehension activities during the
development of a re-engineering project has highlighted
many such issues. There are many tools that are
deficient in many respects when presented with real
world software.

In order to talk about the support necessary in

program comprehension tools it is first necessary to
look at the range of theories that exist about how
programmers carry out various tasks during the
comprehension process. Once key features have been
identified the support most needed can be incorporated
into new tools. This paper sets out to do this. Various
program comprehension strategies are introduced. The
use of GXL and involvement in the SORTIE project are
presented with reference to the tool being adapted and
used. Details of the changes made are given to illustrate
the support desired. These all feed into the final
sections of the paper that discusses the sort of support
that tools should provide, current tool deficiencies, and
some of the ways in which these could be addressed.

2. Program Comprehension Overview;
 Strategies, Methods and Processes

Program comprehension is an important part of not

only software maintenance, but also the entire software

engineering process. Program comprehension is carried
out with the aim of understanding an existing piece of
code. It is a gradual process of building up the
necessary understanding by examining sections of the
source code. Using the knowledge gained from the
source code explanations and understanding can be built
and refined. According to Biggerstaff et al. [1] this
process of discovery and refinement is known as the
Concept Assignment Problem, whilst several other
program comprehension strategies have different terms
or processes to describe the same activities (such as
bottom up comprehension). An overview of many types
of program comprehension can be found in Robson et
al. [2] and Von Mayrhauser and Vans [3].

There is not the space to provide an exhaustive

survey of program comprehension strategies. Instead,
the salient ones are listed with brief information and
references that provide much more information for the
interested reader.

2.1 Top Down (Hypothesis Driven)

Brooks [4] proposed a top down theory of program

comprehension that centred on beacons as knowledge
structures. His theory is hypothesis driven and he
theorises that programmers use increasingly specific
hypotheses to derive the functionality of the code. The
programmer then has to verify (or reject) these
hypotheses through examination of the code and then
refining those hypotheses as necessary. Soloway and
Ehrlich [5] observed a top-down approach to
comprehension by expert programmers when dealing
with familiar code. A mental model is constructed by
forming a hierarchy of goals and programming plans.
Rules of discourse are then used to break down goals
into lower levels and sub-goals.

2.2 Bottom Up

Bottom-up comprehension is based on the concept

of building up understanding from the bottom. By
reading source code and then mentally building these
smaller pieces of information into higher-level
abstractions. Pennington [6] suggests that programmers
gather various sorts of information from program code
and that these differing sorts of information have
different mental representations. Following empirical
studies of this method Pennington concluded that
knowledge is initially built up at lower levels than
functions. The results suggest that control flow
information is acquired before detailed function
information is added to the programmers’ knowledge of
the code.

2.3 Knowledge-Based

Letovsky [7] carried out some empirical studies of

programmers understanding code and from this
developed several theoretical strategies about hypothesis
generation and verification. These were

• Questions
• Conjectures
• Inquiries

There are five types of question; Why, How, What,
Whether, and Discrepancy. Conjectures were defined to
be

“any plausible inference about the program”
From analysis of the empirical data, conjectures were
split into two; content and certainty. Content
conjectures are defined as why, how, what and word
(where word is a subtype of what and based on
meaningful program identifiers) whilst the certainty
conjectures are defined as guesses or conclusions. An
idealised inquiry is based around questions, conjectures
and then searches of the code. Letovsky suggested that
programmers are opportunistic and exploit either
bottom-up or top-down comprehension strategies as
needed.

2.4 As Needed/Goal Directed and Systematic

Based on the results of experiments carried out,

Littman et al. [8] speculated that there were two types of
strategy employed when comprehending existing source
code; as-needed and systematic. The as-needed
approach is based on the localised understanding of
areas of the source code thought to impact and be
impacted by a change. Those areas of the code that do
not fall into the container of impact are not considered
during the comprehension process. The level of
knowledge achieved is based on a subjective judgement
as to what is necessary by the maintainer. The
systematic strategy suggests that the entire program
code be understood before any changes are attempted.

In addition to the two strategies, Littman et al. [8]

suggest that there are two forms of knowledge; static
knowledge and causal knowledge. Static knowledge is
knowledge gained from an analysis of the source code
in it’s textual non-running form. Causal knowledge
covers the interactions between the various parts of the
software, often when it is running. The authors also
divide the mental model created by the programmer into
weak mental models and strong mental models. Weak
mental models contain only static program knowledge
and are built by programmers using an as-needed

strategy. Strong mental models contain not only static
program knowledge but also causal knowledge about
the program. Programmers who use the systematic
strategy for understanding build strong mental models,
although the authors acknowledge that it is unrealistic
for many real systems to even attempt to obtain
complete systematic understanding.

2.5 Syntactic, Semantic and Plan Knowledge

According to Schneiderman and Mayer [9] program

comprehension is the process of forming internal
semantics about the program under consideration. This
information would be represented in a range of
abstraction levels, from an overview of the program’s
operation down to the function of a small piece of code.
The authors then presented the knowledge required for
this process as being split into semantic and syntactic.
Semantic knowledge is domain and experienced based,
such as general programming concepts whilst syntactic
knowledge deals with the actual code statements
required to achieve a given task.

Basic plans can be seen as program fragments of

stereotypical code that achieves a simple, single, goal.
Programs are therefore plans containing several plans
(which may themselves contain other plans). Soloway
and Ehrlich [5] suggest that expert programmers have
knowledge not only of these plans but also of rules of
programming discourse. These rules specify
programming conventions and therefore set up
expectations in the minds of programmers. The results
obtained by these authors from experiments agree with
their suggestions that plans are used by expert
programmers during the comprehension process

2.6 Summary

Comprehension through a mixture of top-down and

bottom-up strategies is now accepted. Studies carried
out by Von Mayrhauser et al. [16] showed that
programmers frequently switch between the levels of
abstraction that they are working at and are primarily
concerned with what the software does and how it is
accomplished. Their studies show that cross-
referencing of information from many sources is
required and carried out by programmers when they are
trying to understand program code.

The integrated model has four major components:

1. program model,
2. situation model,
3. top-down model (domain model) and

4. knowledge base.
The first three of these are the comprehension processes
whilst the fourth is necessary in successfully building
the previous three. The top-down model is usually
invoked if the code is familiar where hypotheses are the
driving force of cognition (Brooks [4], Letovsky [7]). If
the code is new to the programmer then the program
model is built up first (defined by Pennington [6] as the
control flow). Once this basic program model exists
then the situation model is developed. This again works
from the bottom up and involves the mental creation of
a dataflow abstraction.

A programmer builds an understanding of the

system through the creation of a mental model of that
system. This model is built from the scarcest
information and then refined as more of the code is
examined and placed in context. Wiedenbeck [10]
writes that this initial orientation phase (the basic mental
model) is important because it allows the basic goals
and operations of the program to be structured, and
provides a framework for a more detailed study of the
program. Burd et al. [22] describe this process as
gradually piecing together the software puzzle. As
Davis [11] summarises, the information gathering
process is significant in forming a mental
representation. He also writes about the programmer
trying to solve a puzzle because of the non-linear
comprehension that has been shown to take place. Non-
linear comprehension requires that related information
can be freely navigated and is not restricted to a strict
one directional fixed flow of information.

3. GXL, SORTIE and GraphTool

Real world applications of program comprehension

research (for whatever purpose) allows for a true test of
theories and tools. In the case of many tools they are
not necessarily used as part of the rollout of a
commercial product because of the prototypical nature
of the tool code. In a recent collaborative project
(SORTIE) the goal was to apply theories and tools with
some industrial C++ program code, with the ultimate
aim of providing re-engineering suggestions. It was
also a forum in which the use of GXL as a means of tool
interoperability could be explored. This section
provides some background information on GXL,
SORTIE, and the tool used by the authors as part of this
effort. The next section discusses the program
comprehension, maintenance and evolution of the tool
in more detail. For those unfamiliar with XML, the
following terms are used in the rest of the paper:

• DTD Document Type Definitions. A set of
rules that define how XML data should be
structured. DTDs describe the structure and
syntax of an XML document. XML Schema are
a more advanced way of achieving similar
objectives except Schema are written in XML
wheras DTDs have their own grammar

• SAX Simple API for XML. This is the
serial access protocol for XML that is fast to
execute. It is event driven whereby the parser
invokes callbacks when tags are encountered in
the source XML.

• DOM Document Object Model. This
random access protocol converts an XML
document into a collection of objects which can
be visited at any time. The data structure can be
manipulated as any other.

3.1 GXL

GXL (Graph eXchange Language) [13, 14, 20] is a

standard exchange format for graph-based tools. It has
been defined as a sub language of XML. GXL offers a
general graph model that provides support for
exchanging most types of graph. GXL deals with both
instance graphs and any corresponding graph schema.

The graph schema represents the graph structure, the
definition of node and edge types and expected or
supported attributes. This is possible because of the use
of XML.

3.2 SORTIE

SORTIE [18] is a collaborative demonstration of

reverse engineering tools. These tools are used in
combination to solve a reverse engineering task on a
legacy software system (SORTIE). The source code is
from an established research tool for modelling forest
succession, and actively used in British Columbia,
Canada, and North-Eastern USA. There is
approximately 28000 LOC of C++ with very little
documentation. Evolution has occurred over time
leaving the software with a brittle architecture, and
hidden complexities, hence the need for re-engineering.
There are several aims to this project, aside from
ultimately helping to successful reverse engineer the
software through advice and guidance. Many of these
goals are tool oriented.

The only way to improve on existing tools and

theories is to examine their usage in real situations.
This project provides just such an opportunity; existing
tools can be evaluated, and new and improved ones

Figure 1 - GraphTool application screen with a SORTIE graph loaded

developed based on the empirical evidence of their
usage. There is also much to be learnt about the
compositional nature of tools, and their integration,
information sharing, and different uses for given tasks.
SORTIE also allows for better tool evaluations [19] to
be developed that can better reflect the tasks that the
tool is being used for. It also means that evaluations can
be made using like-for-like results rather than
generalised ones.

3.3 GraphTool

The tool that has been used for this work is

"GraphTool". This is a graph layout tool that has been
used internally within the Computer Science
Department at the University of Durham for several
years. It was (re)written in Java in 1999 from the
original UNIX based C. Some necessary re-engineering
was carried out because of the move from procedural C
code to object oriented Java code. The implementation
of the GUI was also changed from the widget style used
on a lot of UNIX platforms to the Java Swing libraries.
GraphTool is now approximately 25KLOC in size, an
increase of 5KLOC, and consists of 86 files. Since that
time GXL has become a way of sharing information that
is pertinent to software analysis and support for this was
deemed a necessary addition to the tool. A screen shot
of the GraphTool application can be seen in Figure 1
after the GXL changes had been made. The source file
used to generate the graph that is shown is one of the
analysis files from SORTIE.

As a summary, GraphTool supports or includes the

following features:
• Reading/writing of four file formats; .2dg, .gxl,

.gin, .cll
• Two layout automatic layout algorithms
• User controlled dragging of nodes and edges
• The use of various colours for nodes and edges
• The use of names on nodes and edges
• Anonymous setting to obscure real names on

graphs
• Generation of postscript output of a graph
• Generation of JPEG images of the graph
• Various analysis assistance such as grouping of

nodes (not supported when saving to all file
formats)

• 100% view of a graph with a zoom/context
window to also show the complete graph

GraphTool does not support particularly

sophisticated automatic layout algorithms at this
moment in time. Whilst that is a possible general area of

development at Durham, the further focus of this
research is to incorporate the GXL code developed and
graph data structures into various visualisation tools
within a framework. GraphTool itself will then need
some modifications to fit into that framework. The
framework was presented by Knight and Munro [12].
Since that time the interfaces of this framework have
evolved to accommodate technology advances, but there
are still active research areas about the metaphors,
connectivity, and true autonomous brokerage being
addressed.

4. Task and Process

This section details the program comprehension

activities and tools used in the comprehension of
GraphTool tool. This has been done because the task
carried out was to incorporate GXL support into
GraphTool. This shows the process of comprehension
on a real system, where that system itself was being
used to analyse another real world system. This process
will also help to illustrate how GraphTool can be of use
for other analysis and also to identify shortcomings that
future visualisation and program comprehension tool
research should seek to address.

4.1 Extending GraphTool with GXL

Much of the work done in carrying out this task has

involved the incorporation of GXL into the tool so that
it can read and display GXL graphs. However, there is
also a need to generate GXL files from the graph stored
in memory regardless of original format. This means
that the tool is then also capable of acting as a
conversion agent between the file formats that it
supports. The tool already supports three other file
formats, all proprietary to Durham. One of these file
formats was introduced when the software was
converted to Java. It is quite verbose and includes
various attributes for layout/colour as well as node and
arc values and connections. Some of the attributes of
this format that deals with graphics were included into
the GXL generation from GraphTool. This is so that
they can be used when reloading a saved graph into
GraphTool or into other analysis tools. It essentially
means that layout and colour attributes can be preserved
if the tool reading them in chooses to make use of them.

Because GraphTool uses its own internal data

structure to represent the nodes and edges, the
integration of GXL into the tool required code to be
added that converted from the XML to this data
structure. Loading the information had to populate the

graph structure, and saving meant walking the data
structure to output the necessary information. This
influenced a design decision to use SAX parsing of the
GXL file. GXL is based on XML and has a DTD
specifying the valid structure of tags and data. Java
tools exist for providing both SAX and DOM parsers of
a file. The DOM approach creates a data structure of
the tree of tags (and their values), whereas the SAX
approach upon finding start and end tags operates a call-
back feature providing identification of, values of and
attributes of that tag. The cleaner approach from a
parsing point of view is the DOM approach because a
walk of the tree created using semantic knowledge
allows for appropriate conversions and actions to be
taken. However the creation of a secondary data
structure in memory was considered inefficient, thus the
decision to use SAX was made. This choice had
interesting repercussions when adding semantic code to
the call-back methods of the parsing code and when
loading multiple graphs particularly there is a need to
explicitly save the intermediate parse state.

A restriction imposed by the other file formats of

GraphTool was that only one graph at a time could exist
in memory. Disjoint nodes were considered to be just
that, and not sub or related graphs. Since GXL supports
multiple nested graphs some additions were made to the
data structure to support this notion. This means that
GXL loading (and saving) is information preserving
within GraphTool. The other file formats support as
much as they were originally intended to and have not
been altered because of this change.

The GXL file containing all of the SORTIE analysis

is approximately 34Mb in size. Partly because of the
object based data structures used by GraphTool (i.e. not
as efficient as low level C) and the temporary storage
necessary when analysing a GXL file this analysis fails
to finish loading. The ability to have an overall view
provided by this file would have proved useful from an
analysis perspective. No analysis carried out so far has
provided a high level view in which to begin to hang
any detailed analysis off. This provides justification for
filtering of information. The loading/saving operations
may have to be further changed to reduce the impact on
memory, but the use of different views would enable
just the higher-level nodes to be viewed in the first
instance.

Since Java is an object-oriented language, there are

features of the existing implementation that at first sight
appear to be very clean. One example of this is the use
of Node and Edge classes. This means, for example,
each node knows what value it has, its name, some

identification code and so forth. It also knows how to
draw itself and therefore contains its graphical size and
colouring attributes. There are also many other things
on which a node can be asked to act such as saving
itself, or having attributes added to it. In this way each
node is very much a self-contained entity, and the graph
just has to keep track of nodes and edges. On the other
hand this creates some coupling issues.

Because of the GXL file format, loading is done via

the XML parsing code, which creates (for a node) a new
node and sets the necessary attributes accordingly.
Saving is another matter, and has been implemented in a
similar way to the other file formats. The graph saves
the high level information it contains and then calls on
the nodes and edges it knows about to save themselves.
The higher-level routines are then not cluttered with
node detail, but the level of dependence on a file format
of many classes is high. To save a GXL file requires the
use of (aside from menu options in user interface
classes) over five different classes. Deciphering the
flow of information and method calls is simple and
logical although hand traces of calls are needed to find
this out. There is a flow of information from the higher-
level classes to those representing smaller conceptual
entities. Discovering this flow of information, and
which auxiliary methods at the same level of class
structure are used, was a time consuming process.

It is interesting to note at this point the types of

activities necessary to make these changes, and also
which comprehension and software engineering tools
have been used. The (re)development of GraphTool has
involved, on the Windows/PC platform, the use of a text
editor and a DOS box in conjunction with the standard
Java development kit (jdk 13.1)as provided by Sun. It
should be noted at this point that this is essentially the
minimum requirements for such a project. There has
been no use of integrated environments, graphical
debugging tools, and certainly no use of any program
comprehension tools. The first few of these relate more
to the preferences of the first author, and the lack of
good, affordable tools for Java development on the
Windows platform that can be suitably tailored to her
way of working. It is also a legacy of having developed
in Java since its inception when this was the only way of
creating applications. The more important issue in the
context of this paper is that no program comprehension
tools have been used. A lengthier discussion as to some
of the reasons why this practice is common can be
found in the latter sections of this paper. One of the
main reasons are that tools are often language specific
and there are relatively few for Java compared to other

languages. Other are the availability of the tools, and
also the knowledge required to use them.

One tool that was used for syntactic debugging, and

thus for a form of program comprehension was the Java
compiler. This was used several times in place of a grep
like tool. The use of the compiler was considered more
than adequate because of the context that it can provide.
String matching of method names (for example) is not
always of use when the object that is being referred to is
also important. Some changes made to the original
GraphTool source code were to make it more object
oriented and to hide variables and methods by changing
access modifiers (public to private for example) and
then providing access methods. Making changes to a
few classes caused large impact changes on the rest of
the code. In this instance the compiler was a great help.
It is also worth noting here that many program
comprehension tools (admittedly not all) require that the
source be at least compilable. In this instance this
would mean that the same method of assessing and
repairing impact would have had to have been used. An
example where integrated environments are improving
is that they do support object hierarchy trees, and
provide syntax highlighting that works (most of the
time!) with incomplete source code.

The Java analysis coverage is currently quite good

because of the amount of change that has taken place
over the last few months. However there are still many
enhancements that could be incorporated to create a
better program comprehension aid. Some of these relate
to the ability of the tool to group nodes. These groups
(or nested graphs as far as GXL records such clusters)
can be created but have to be done from the ground up
at the moment. Once created they can only be removed
or aggregated into higher-level clusters. The ability to
move nodes around clusters and to remove some of the
nodes from a cluster would greatly benefit exploratory
analysis procedures. Other analysis support would be
an improved layout, the use of schemas for filtering
GXL graphs, and allowing annotations to add
information to nodes and/or clusters. GXL would be
able to preserve this information by saving it as an
attribute.

4.2 GraphTool Experiences in SORTIE

Having carried out the task of changing GraphTool

to support GXL, the process of analysing the SORTIE
system could begin. This required the loading of the
GXL files that had been generated from the C++ source
code. A decision was made to use the GXL output of
the parser developed as part of other research work [17].

This consisted of information about the methods and
classes contained in the source code. By sharing the
data in this way the idea of tool interoperability is both
supported and demonstrated.

Because GraphTool is a generic graph application

then there is no particular layout or analysis
incorporated into the tool for use when looking at
software and systems. This meant that the GXL graphs
loaded with all nodes defaulted to a position of x=0,
y=0. Automatic layout provided a start, but to get some
of the better layouts (on the smaller graphs) then hand-
layout was used. For the larger graphs it was decided
that it was easier to leave the layout as suggested by the
automatic algorithms, even if there were lots of crossed
lines and so forth. This decision was made for initial
ease of use, but was quickly found to cause analysis
problems, primarily because of the number of nodes and
arcs in the graphs.

There are a lot of type nodes in the GXL used for

this analysis. Whilst the importing of the information
makes this distinction from named nodes through setting
of the node colour, it may be that the removal of some
of these (or a reduction in the number of edges) may
make for much clearer graphs. As can be seen in Figure
1, many of the edges are labelled as starting with
dmmschema#. This means that if stylesheet support
was included in GraphTool that it would be possible to
remove some of these edges through representing the
information in another way. GXL, depending on its
generation, can be very information rich, and the use of
stylesheets can provide a way of filtering that
information into manageable views. Different
transformations (via the stylesheets) provide different
views of the same information. These can be used in
combination to support the various program
comprehension activities of any user.

Because of the size of the SORTIE system (and

therefore directly the graphs) and the non-specific
nature of GraphTool the analysis is quite time
consuming. However, these were both anticipated. It
perfectly illustrates the need for using a variety of
views, visualisations, aggregations, and analyses in
order to achieve understanding. Different visual
metaphors, dimensions, and layouts can be combined
with different schema style views in order to provide
more complete understanding through management of
the underlying mass of data.

Having spent time trying to clean up some graphs

using GraphTool it became obvious that not only were
different visualisations required to complement the

graph views, but also analysis aids at the graph level.
When loading a GXL graph, GraphTool uses two
colours for the node. All nodes are given their type as a
name to start with. If any name is then provided as an
attribute this replaces the type. At this point, the colour
of the node is then set to green. The remaining nodes are
left with the default node colour (specified by user
preferences in GraphTool, although on saving a GXL
file with graphical attributes this colour is saved for
future use). This was helpful when looking at the
graphs, because it actually showed (unintentionally)
where collapsing nodes and joining edges, or other
visualisations encoding the information, would be
useful. A lot of the clutter in the graphs stemmed from
nodes (and hence edges) that essentially provided some
contains/declares information. Another drawback is that
the types of the nodes and edges were all prefixed with
dmmSchema.xsd# which as a reference into a specific
part of that XML Schema file that was not available,
was of little use. This may provide some layout
assumptions when using tools that are able to
incorporate stylesheets. It highlights the need for
specialist processing for some graphs which may only
be available in software visualisation specific tools
(rather than a general graph oriented tool), or that
should be provided in general tools in an abstract
manner. It is possible to select nodes by hand and delete
them, but it would have been preferable to have been
able to search for all (for example) nodes of
dmmSchema.xsd#sourcePart and then to collapse
the nod to merge the edges, not remove them as the
delete operation currently does. It also highlights the
situations where other visualisations may automatically
provide some of that analysis through aggregation of
information to generate a particular glyph with colours,
sizing, position, and orientation based on connectivity
and attributes of that information item.

Because many of the graphs, and certainly those of

any realistic size, were very cluttered when viewed this
hindered any real analysis judgements about the
SORTIE system. The only removal of clutter that was
made easy was node deletion that also deleted edges.
This then removed links that did and should have
existed; thus making the understanding even harder!

4.3 Summary

An interesting outcome of trying to analyse SORTIE

with GraphTool is that because the GXL file came from
elsewhere (and no source code has been seen) no
assumptions can be made. Any analysis relies solely on
the GXL provided and any tools that can utilise it. This
has proved an interesting exercise from a program

comprehension perspective because of the way in which
it highlights what tool support is necessary. Much of
GXL provided is detailed enough to give enough
information for recommendations, but the tool support
does not make this particularly easy.

The previous two sections show the process of

program comprehension from two perspectives. The
first shows the processes and issues when making
changes to a system. Thus the information needs are
targeted towards specific aims; in this case identifying
where to make the change and what sort of changes
needed to be made. The latter illustrates the use of the
tool that has just been enhanced being used for some
general program comprehension activities where overall
system understanding was the first goal. Obviously
both have the benefit of the person carrying out the
analysis knowing the tool being used to do it, but they
both show that the current program comprehension tools
have some inadequacies.

5. Lessons Learnt

Program comprehension is very much a gradual

process where the maintainer gathers information
through studying various aspects of the code at different
times, and possibly by returning to previously examined
pieces of code. This process is true regardless of the
strategy employed to examine the various pieces of code
that constitute the system. The process of linking
together pieces of evidence and any relations between
them (such as validating alibis) is a common process in
detective work; essentially what is happening when
trying to understand an existing piece of code. The
main things that have been learnt are:

• There is need for flexible tool support
• Cognitive issues are important, but such

guidelines need to take into account the tool
support aims

• The importance of a variety of viewpoints,
including supporting different levels of
detail

• Cross referencing is valuable
• Live/interactive linking between related

pieces of information can greatly enhance
usability

• Java analysis tools are necessary

Generally the process of investigation is deductive

because the programmers are not trying to create any
new “axioms”. The main concern is to try and make
sense of the information (or evidence) that they already
have. This process of detective work points to the need
to provide flexible tools that allow for the evidence

gathering and hypothesis refinement to be achieved in
several ways, thus supporting many of the different
strategies said to be employed during program
comprehension. To be able to freely move between
related pieces of information allows this knowledge
discovery and clarification to proceed in a non-linear
fashion. This should then enable the maintainer to work
more easily simply by using the tool to follow their train
of thought, or to put it another way, their line of inquiry.

Storey et al. [15] identified a hierarchy of cognitive

issues that are important when considering what
facilities a program comprehension tool should include.
They identify the fact that software exploration tools
can be likened to hypermedia document browsers.
Because of this a hierarchy of hypermedia cognitive
issues has been adapted to form program comprehension
guidelines. Also identified is the lack of support in
existing systems for the integrated and top-down models
of comprehension and the inability to switch between
different mental model information. Navigation and
orientation cues were also identified as an area for
future research. The work done by Chan and Munro
[21] identifies the need to provide different viewpoints
for maintainers. This allows them to choose the most
appropriate view for the current task, and also to be able
to switch between views to gain a higher or lower level
understanding of some piece of information.

Von Mayrhauser et al. [16] suggest that cross-

referencing of related areas of code would make
identification of areas where changes need to be made
easier. These cross-reference links should be, where
possible, hypertext and also link to algorithm and/or
domain information. They also identify the need to
provide orientation cues in the documentation and
propose the use of some form of browser history with
on-line sticky notes to make this effective. They also
think that documentation of the system (which could be
included in any tool that was used to aid
comprehension) should have a high-level road map of
the system structure.

There is a need for tools that support Java. Some of

the analysis issues that are problematic for C++ do not
exist for Java because of the design of the language.
Regardless of any possible difficulties it is important to
realise that Java code is being used in industry as well as
in academic systems, and this therefore creates
comprehension and maintenance problems that need to
be solved. A situation where it is common to find Java
code in use industry that already needs maintenance is
where it is based on legacy C code (for example). In
cases such as these where the need was to upgrade the

language used (however real or perceived that need) the
applications have often been badly translated from their
original implementations. Not only do non object
oriented features get replicated in object oriented code,
but any fragile parts of the system (due to prior bad
maintenance) also get moved to the new system. This
creates a system in instant need of understanding and
repair.

In the tool demonstration documented in [19] several

interesting results emerged. The first was that by seeing
what their tools were able to do in a real setting
provided insight for the developers of those tools.
Another was of flexibility. If tools are too rigidly
defined in their ways of working, or more precisely, in
how they allow user(s) to work with them then they will
receive little in the way of widespread acceptance. It
was also highlighted how important it is to evaluate
tools within given contexts. This is vital if a tool that is
highly specialised is not to be penalised because of its
inability in all of the other situations it is presented with.
A final important point is that the analysis and
comparison, and indeed the authors of this paper
believe, use of tools should focus on different
combinations of interoperable tools. In this way, a tool
can be developed to provide good and thorough support
for a particular sub-part of several tasks. It can then be
reused in different situations as necessary, but it then
does not fall into the problem of jack of all trades,
master of none where in trying to satisfy all demands on
its usage it manages to do none well.

6. Conclusions and Discussion

This paper has highlighted the use of program

comprehension for both the analysis of a system to
provide recommendations and also to make changes to
the very system that was to be used to analyse the first.
The activities show how many aspects of the current
program comprehension tools are insufficient. This is
not advocating that every research project or group
should make it their business to create saleable and
robust tools. In a research environment where finances
do not relate to implementations of ideas and strategies,
this does not make sense. However, incorporating
useful and good features into prototypes will help to
demonstrate to industry that program comprehension in
the real world with real systems is a viable and sensible
option.

Empirical evidence of two very small contributions

to program comprehension in the large have highlighted
that they are limitations to the existing tools, and shown
that certainly for visualisations, other representations

and analyses that could be of use. Important questions
to ask at this point are “what is it that we want?”, “what
do we want to see, and when?” and “what importance is
the what, as well as the how, to our understanding?”.
This last question is very important based on the work
described in this paper. Often the questions being asked
of the code were more than just simple issues relating to
compositions of classes.

Improving interoperability between tools means that

independently specialised tools can be composed
together to form sophisticated and powerful analysis
suites for program comprehension, re-engineering, and
maintenance. GXL has provided one way of doing this,
and if the work in this project is continued successfully
then it provides a means of allowing interoperability
within tools at one site or collection.

Acknowledgements

This work is financed by an EPSRC ROPA grant:
VVSRE; Visualising Software in Virtual Reality
Environments and by Malcolm Munro through VRG.

References

[1] T. J. Biggerstaff, B. G. Mitbander, and D. E. Webster,

Program Understanding and the Concept Assignment
Problem, Communications of the ACM, Vol. 37, No.
5, pp72-82, May 1994.

[2] D. J. Robson, K. H. Bennett., B. J. Cornelius, and M.
Munro, Approaches to Program Comprehension,
Journal of Systems and Software 14, pp79-84, 1991.

[3] A. Von Mayrhauser and A. M. Vans, Program
Comprehension During Software Maintenance and
Evolution, IEEE Computer, pp44-55, August 1995.

[4] R. Brooks, Toward a Theory of Comprehension of
Computer Programs, International Journal of Man-
Machine Studies, Vol. 18, No. 6, pp542-554, 1983.

[5] E. Soloway and K. Ehrlich, Empirical Studies of
Programming Knowledge, IEEE Transactions on
Software Engineering, Vol. SE10, No. 5, pp 595-609,
September 1984.

[6] N. Pennington, Stimulus Structures and Mental
Representations in Expert Comprehension of
Computer Programs, Cognitive Psychology, Vol. 19,
No. 3, pp295-341, July 1987.

[7] S. Letovsky, Cognitive Processes in Program
Comprehension, Journal of Systems and Software,
Vol. 7, pp325-339, 1987.

[8] D. C. Littman, J. Pinto, S. Letovsky, and E. Soloway,
Mental Models and Software Maintenance, Empirical
Studies of Programmers, Ed. E. Soloway and S.
Lyengar, pp80-98, 1986.

[9] B. Shneiderman and R. Mayer. Syntactic/Semantic
Interactions in Programmer Behaviour: A Model and
Experimental Results, International Journal of
Computer and Information Sciences, Vol. 8, No. 3,
pp219-238, 1979.

[10] S. Wiedenbeck, The Initial Stage of Program
Comprehension, International Journal of Man-
Machine Studies, Vol. 35, pp517-540, 1991.

[11] S. Davis, A Guessing Measure of Program
Comprehension, International Journal of Human-
Computer Studies, Vol. 42, pp245-263, 1995.

[12] C. Knight and M. Munro, Mediating Diverse
Visualisations for Comprehension, Proceedings of the
IEEE 9th International Workshop on Program
Comprehension, May 2001.

[13] R. C. Holt, A. Winter, and A. Schürr, GXL: Towards a
Standard Exchange Format, Proceedings of the 7th
IEEE Working Conference on Reverse Engineering
(WCRE 2000), pp162-171, 2000.

[14] A. Winter, Exchanging Graphs with GXL, Proceedings
of Graph Drawing, 9th International Symposium (GD
2001), Springer Verlag, P. Mutzel (Editor), 2001.

[15] M.-A. D. Storey, F. D. Fracchia, and H. A. Müller,
Cognitive Design Elements to Support the
Construction of a Mental Model During Software
Visualization, Proceedings of the 5th IEEE
International Workshop on Program Comprehension,
pp17-28, May 28-30, 1997.

[16] A. Von Mayrhauser, A. M. Vans, and A. E. Howe,
Program Understanding Behaviour during
Enhancement of Large-scale Software, Journal of
Software Maintenance: Research and Practice, Vol. 9,
pp299-327, 1997.

[17] Sergey Marchenko, Tim Lethbridge (KBRE group);
http://www.site.uottawa.ca/~tcl/kbre/

[18] SORTIE web site;
http://www.csr.uvic.ca/chisel/collab/

[19] S. E. Sim, M.-A. Storey, and A. Winter, A Strutured
Demonstration of Five Program Comprehension
Tools: Lessons Leant, Proceedings of the 7th IEEE
Working Conference on Reverse Engineering (WCRE
2000), pp184-193, 2000.

[20] GXL web site; http://www.gupro.de/GXL/

[21] P. S. Chan and M. Munro, PUI: A Tool to Support
Program Understanding, Proceedings of the IEEE 5th
International Workshop on Program Comprehension,
pp192-198, May 28-30, 1997.

[22] E. L. Burd, P. S. Chan, I. M. M. Duncan, M. Munro,
and P. Young, Improving Visual Representations of
Code, University of Durham, Computer Science
Technical Report 10/96, 1996.

