
IMPLEMENTING A DOCUMENT-BASED REQUIREMENTS
TRACEABILITY: A CASE STUDY

Suhaimi Ibrahim,

Norbik Bashah Idris
Centre For Advanced Software Engineering,

Universiti Teknologi Malaysia,
Kuala Lumpur,

Malaysia
(suhaimi,norbik)@case.utm.my

Malcolm Munro
Department of Computer Science,

University of Durham,
United Kingdom

malcolm.munro@durham.ac.uk

Aziz Deraman
Fac. of Technology & Infor. System,

Universiti Kebangsaan Malaysia,
Selangor, Malaysia
a.d@pkrisc.ukm.my

Abstract

Requirements traceability as being mandated by many
standards governing the development of systems (e.g.
IEEE/EIA 12207) is undoubtedly useful to software
maintenance. To many organizations, it is viewed as a
measure of system quality and is treated as an important
component of their efforts towards achieving process
improvement (CMM). However, not much elaboration on
what types of information needed and how a strategy to
achieve this is described in the development standards and
guidelines. In this paper, we present our approach in
implementing a requirements traceability derived from
system documentation. It provides visibility into a system
composing of different artifacts that include requirements,
test cases, design and code. Our approach supports the top
down and bottom up traceability in response to tracing for
the ripple-effects. We developed a traceability tool,
called Catia and applied it to a case study of system
documentation and discussed the results.

Key Words: documentation standards, requirements
traceability, call graphs, impact analysis

1. Introduction

Documentation is one of the important items in

software maintenance. Tryggeseth [1] had demonstrated
in his experiment that documentation significantly
improves maintainer’s ability to understand a system and
make efficient change to it. Despite this, many developers
are still reluctant to use anything but the source code for
maintenance tasks, as documentations are generally
considered abstracts and not up-to-date. However, many
agree that the use of documentation is more significant if
the information it contains are traceable between software
models [2]. We mean software models are the work
products such as code, design and requirements that differ
from one another in terms of its granularity. Code is a

software model that emphasizes on the detailed
granularity while requirements are another set of software
model that describe a system from the user’s point of
view.

There is a need to relate from one model to another

e.g. from a requirement to its implementation code or
design to test cases. This is called traceability. Ramesh
relates traceability as the ability to trace the dependent
items within a model and the ability to trace the
corresponding items in other models [3]. Pursuant to this,
Turner and Munro [4] assume that a software traceability
implies that all models of the system are consistently
updated. Tracing such kind of traceability is called
requirements traceability [3].

Many software engineering standards governing the

development of systems (e.g. IEEE/EIA 12207)
emphasize the need of requirements traceability to be
included into documentation and treat it as a quality factor
towards achieving process improvement (CMM)[5]. The
issue is that not much elaboration on what types of
information needed and how a strategy to achieve this are
described in the development standards and guidelines.
The developers normally prepare some traceability
relationships between software components at the high
level abstracts and take least effort to integrate both the
high level and the low level software models e.g. a
requirement to its implementation code or vice versa. The
ability to implement such a requirements traceability
would allow a maintainer or management to visualize the
impacts prior to actual change. This will greatly help one
take appropriate actions with respect to decision making,
schedule plans, cost and resource estimates.

In this paper, we present an implementation of

requirements traceability to support visibility into the
system environment that involves four main sets of
artifacts, namely requirements, test cases, design and

code. These artifacts are made available from the
documentation. Our approach of requirements traceability
provides the ability to not only relate a requirement to its
implementation code but also to any other artifact levels.
It does provide ability for top-down and bottom-up
tracing between artifacts.

This paper is organized as follows: Section 2 presents

an overview of our traceability model. Section 3 discusses
our mechanism to manage a requirements traceability
followed by the total traceability approach in section 4.
Section 5 presents a case study with some results and
lessons learnt. Section 6 presents some related works.
Lastly, section 7 gives a conclusion and future work.

2. A Traceability Model

Figure 1 reflects the notion of our model to establish

the relationships between artifacts. The thick arrows
represent the direct relationships while the thin arrows
represent the indirect relationships. Both direct and
indirect relationships can be derived from the static or
dynamic analysis of component relationships. Direct
relationships apply actual values of two components,
while indirect relationships apply intermediate values of
relationship e.g. using a transitive closure.

T2

R1

D3
D2

C1

C3

T1

T3

R2

D4

D3D1
D1

C6
C4

C4

C5

C4

C2

Static relationships are software traces between

components resulting from a study of static analysis on
the source code and other related models. Dynamic
analysis on the other hand, results from the execution of
software to find traces such as executing test cases to find

the impacted codes. We classify our model into two
categories; vertical and horizontal traceability. Vertical
traceability refers to the association of dependent items
within a model and horizontal traceability refers to the
association of corresponding items between different
models [6].

2.1 Horizontal Traceability

We regard horizontal traceability as a traceability
model of inter-artifacts such that each component (we call
it as an artifact) in one level provides links to other
components of different levels. Figure 2 shows a
traceability from the point of view of requirements. For
example, R1 is a requirement that has direct impacts on
test cases T1 and T2. R1 also has direct impacts on the
design D1, D2, D3 and on the code component C1, C3,
C4. Meanwhile T1 has its own direct impact on D1 and
D1 on C4, C6, etc which reflect the indirect impacts to
R1. The same principle also applies to R2. R1 and R2
might have an impact on the same artifacts e.g. on T2,
D3, C4, etc. Thus, the system impact can be interpreted as
follows.
S = (G, E)
G = GR ∪ GD ∪ GC ∪ GT
E = ER ∪ ED ∪ EC ∪ ET
Where,
S - represents a total impact in the system

DESIGN REQUIREMENT G - represents an artifact of type requirements (GR),
design (GD), code (GC) or test cases (GT).
E - represents the relationships between artifacts from the
point of view of an artifact of interest. This is identified
by ER, ED, EC and ET.
Each level of horizontal relationship can be derived in the
following perspectives.

TEST CASES CODE i) Requirement Traceability
ER ⊆ GR x SGR
SGR = GD ∪ GC ∪ GT
A requirement component relationship (ER) is defined as
a relationship between requirement (GR) with other
artifacts (SGR) of different levels.
ii) Design Traceability
ED ⊆ GD x SGD
SGD = GR ∪ GC ∪ GT

Figure 2: Traceability from the requirement perspective
 Figure 1 : Meta-model of traceability system

A design component relationship (ED) is defined as a
relationship between a design component (GD) with other
artifacts (SGD) of different levels. GD can be
decomposed into more detailed design components, if
necessary.
iii) Test case Traceability
ET ⊆ GT x SGT
SGT = GR ∪ GD ∪ GC
A test case component relationship (ET) is defined as a
relationship between a test case (GT) with other artifacts
(SGT) of different levels.
iv) Code Traceability
EC ⊆ GC x SGC
SGC = GR ∪ GD ∪ GT
A code component relationship (EC) is defined as a
relationship between a code component (GC) with other
artifacts (SGC) of different levels. Code can be
decomposed into more detailed components.

2.2 Vertical Traceability

We regard a vertical traceability model for intra-
artifacts of which an artifact provides links to other
components within the same level of artifacts. In
principle, we consider the following as our vertical
platforms.

a) Requirement level
b) Test case level
c) Design level
d) Code level

Requirement level here refers to the functional
requirements. While the test case level refers to the test
descriptions that describes all possible situations that need
to be tested to fulfill a requirement. In some systems,
there might exist some requirements or test cases being
further decomposed into their sub components. However,
to comply with our model, each is uniquely identified. To
illustrate this phenomenon, let us consider the following
example.
Req#: 5
Code : SRS_REQ-02-05
Description: The driver presses an “Activation” button to
activate the AutoCruise function.

Code

Requirement

Documentations

Design

3. Observe
traces

4. Generate
traces

5. Satisfy
goal 1. Select

test cases

Test Cases

The test cases involved :
1) Test case #: 1
 Code: TCASE-12-01
 Description : Launch the Auto Cruise with speed is >

80 km/hr. 2. Clarify
knowledge

i) Test case#: 1.1
Code : TCASE-12-01-01
Description: Launch the Auto Cruise while not
on fifth gear.
ii) Test case#: 1.2 4. Generate

traces Code : TCASE-12-01-02
Description: Launch the Auto Cruise while on
fifth gear.

2) Test case#: 2
 Code : TCASE-12-02

Description: Display the LED with a warning
message “In Danger” while on auto cruise if the
speed is >= 150 km/h.

We can say that Req#5 requires three test cases instead of
two as we need to split the group of test case#1 into its
individual test case#1.1 and test case#1.2. In the design
and code, again there might exist some ambiguities of
what artifacts should be represented as both may consist
of some overlapping components e.g. should the classes
be classified in the design or code ? To us, this is just a
matter of development choice.

Design level can be classified into high level design
abstracts (e.g. collaboration design models) and low level
design abstracts (e.g. class diagrams) or a combination of
both. In our implementation, we pay less attention on high
level design abstracts to derive a traceability as this needs
more research and would complicate our works. We
apply the low level design abstracts that contain the
software packages and classes with their interactions.
While, the code is to include all the methods and their
interactions.

3. Approach
3.1 Hypothesize Traces

We believe that there exists some relationships
among the software artifacts in a system. We need to trace
and capture their relationships somehow not only within
the same level but also across different levels of artifacts
before a impact analysis can be implemented. The process
of tracing and capturing these artifacts is called
hypothesizing traces. Hypothesized traces can often be
elicited from system documentation or corresponding
models. It is not important in our approach whether the
hypotheses should be performed by manually through the
available documentations and software models or by
automatically with the help of a tool. Figure 3 reflects one
way of hypothesizing traces. It can be explained in the
following steps.

 Figure 3 : Hypothesized and observed traces

1. For each requirement, identify some selected test
cases (RxT).

2. Clarify this knowledge with the available
documentation, if necessary.

3. Run a test scenario (dynamic analysis) for each test
case based on the available test descriptions and
procedures, and capture the potential effects in terms
of the methods involved (TxM). We developed a tool
support, called CodeMentor to identify the impacted
code by instrumenting the source code prior to its
execution [7].

4. Perform a static analysis on the code to capture the
call relationships of method-to-method (MxM) and
class-to-class (CxC) dependencies.

We experimented using tool supports such as

McCabe [8] and Code Surfer [9] to help capture the above
program dependencies. However, other manual works as
well as the need for other types of information saw us
developing our own code parser called TokenAnalyzer
[10].

3.2 Traceability Approach

Intrinsically, traceability provides a platform for
impact analysis. We can classify three techniques of
traceability.

1. Traceability via explicit links
Explicit links provide a technical means of
explicit traceability e.g. traceability associated
with the basic inter-class relationships in a class
diagram modelled using UML [11].

2. Traceability via name tracing
Name tracing assumes a consistent naming
strategy and is used when building models. It is
performed by searching items with names similar
to the ones in the starting model [12].

3. Traceability via domain knowledge and concept
location.
Domain knowledge and concept location are
normally used by experienced software
developer tracing concepts using his knowledge
about how different items are interrelated [13].

We apply 1) and 3) in our traceability approach. We

obtain the explicit links of component relationships from
the hypothesized traces and establish a set of matrices to
implement the traceability between components in the
system. We use concept location to establish links
between requirements and test cases with the
implementation code. This process requires a maintainer
to understand the domain knowledge of the system he
wants to modify. With this prior knowledge of a
requirement, a maintainer should be able to decompose it
into more explicit items in terms of classes, methods or
variables. These explicit items represent a requirement or
a concept that are more traceable in the code [13]. With
the help of test cases in hand, our approach via
codeMentor should be able to support a maintainer tracing

and locating the ripple-effects of the defined items in
terms of the impacted methods and classes.

Name tracing is another technique for implementing

traceability. It can be used to locate the corresponding
items of a model with another model e.g. to locate the
occurrences of an item of similar name in a requirement
with the ones that exist in the implementation code in an
effort to establish some links between requirements and
code. However, this strategy is not practical in our context
of study. The reason is that name tracing cannot be used
to search for structural relationships of program
dependencies.

4. Total traceability

Figure 4 describes the implementation of our total

traceability. The horizontal relationships can occur at the
cross boundaries as shown by the thin solid arrows. The
crossed boundary relationship for the requirements-test
cases is shown by RxT, test case-code by TxM, and so
forth. The vertical relationships can occur at the code
level (MxM- method interactions) and design level (CxC-
class interactions, PxP- package interactions)
respectively.

The method interactions can simply be transformed
into class interactions and package interactions by the use
of mapping mechanism based on the fact that a package is
made up of one or more classes and a class is made up of
one or more methods. The thick doted lines represent the
total traceability we need to implement in either top down
or bottom up tracing. By top-down tracing, we mean we
can identify the traceability from the higher level artifacts
down to its lower levels e.g. from a test case we can
identify its associated implementation code. For bottom-
up tracing, it allows us to identify the impacted artifacts
from a lower to a higher level of artifacts e.g. from a
method we can identify its impacted test cases and
requirements.

Requirements

Test cases

(RxT)

(TxM) (MxC)

(RxC) Top
Down Bottom

Up
(R
x
M)

Design
(CxC),(PxP) (TxC),(TxP)

Code
(MxM)

Figure 4 : System artifacts and their links

The table 1 represents an example of mapping table
of our system to support traceability. Each method (i.e.
member function in C++) is assigned an ID and a method
name. CSU column represents the class numbers and CSC
column represents the package numbers. It can be
interpreted as e.g. driving StationHandler() is a method
and the only method of class#1 that resides in a
package#1. getState() is a method of class#2 and still
belongs to package#1, etc.

We assign each method with some LOC (lines of
code) and VG (value of program complexity) of which
these metrics are made available before hand with the
help of a code parser, e.g. McCabe tool. We need to
capture these metrics for each class and use classes to
compute the LOC and VG for packages. We need to store
the similar mapping scheme for classes and packages but
in separate tables. This information is required as the
system goes along the way tracing for potential effects, it
can collect and sum up the metrics of the impacted
artifacts.

4.1 High Level Traceability

We relate the high level traceability as a tracing
involving the requirements and test cases. This tracing is
based on dynamic analysis of program execution via test
scenarios. In our case study, each requirement is
characterized by some test cases as explained in the
previous section 2.2. As we had the RxT and TxM from
the hypothesized traces earlier, we can produce the RxM
using a transitive closure.
(RxT) and (TxM) (RxM)
We use the underlying RxM to create a RxC and RxP by
upgrading the methods into classes and classes into
packages with the help of the same mapping mechanism.
The same principle applies to bottom up tracing but now
we use the underlying MxR (i.e. the inverted RxM table)

and transforms it into CxR and PxR. The same principle
applies to the test cases with their low level artifacts.

4.2 Low Level Traceability

We classify the low level traceability as a tracing that
can be established around the code and design levels. This
includes the methods, classes and packages. The impacts
can be established between components based on
dependence graphs of MxM such that an impact to a
method implies an impact to its class and an impact to a
class implies an impact to its package it belongs to. This
dependency makes it possible to transform the MxM into
MxC, CxM, CxC, CxP, PxC and PxP. At the low
traceability level, the vertical links can occur between a)
method-method, b) class-class, and c) package-package.
While, the horizontal links can occur across boundaries
between a) method-class, b) method-package, c) class-
package.

5. Case Study: OBA

To implement our model, we applied it to a case
study of software project, called the Automobile Board
Auto Cruise (OBA). OBA is an embedded software
system of 3k LOC with 480 pages of documentation
developed by the M.Sc group-based students of computer
science at the Centre For Advanced Software
Engineering, university of Technology Malaysia. OBA
was built as an interface to allow a driver to interact with
his car while on auto cruise mode such as accelerating
speed, suspending speed, resuming speed, braking a car,
mileage maintenance, and changing modes between the
auto cruise and non-auto cruise. The project was built
with complete project management and documentations
adhering to DoD standards, MIL-STD-498+[14]. The
software project was built based on the UML
specification and design standards [11] with a software
written in C++. The documentations provided us with
some useful information on artifact relationships, e.g. we
obtained the requirement-test case relationships (RxT)
from the SRS (Software Requirement Specification)
document, the class-package relationships (CxP) from the
SDD (Software Design Description) document and test
procedures from the STD (Software Test Description)
document.

Table 1: A mapping table

5.1 Impact Generation

We identified from the OBA project, 46
requirements, 34 test cases, 12 packages, 23 classes and
80 methods. Our system, Catia assumes that a user
request has already been translated and expressed in terms
of the acceptable artifacts i.e. requirements, classes,
methods or test cases. Catia was designed to manage the
potential effect of one type of artifacts at a time.

MIL-STD-498+ - This standard was formally closed by the US
DoD in 1998 and adopted a new standard, the IEEE/EIA 12207
in replacement. Nevertheless, most of the detailed data items of
MIL-STD-498 were absorbed into the new standard and
remained intact.

The system works such that given an artifact as a

primary impact, Catia can determine its effects on other
artifacts (secondary artifacts) in either top-down or
bottom-up tracing. Figure 5 shows an initial user entry
into the Catia system by selecting a type of primary
artifacts followed by a set of the detailed artifacts. The
user selected requirements as the primary artifact and
chose the req4, req6 and req22 as the detailed
requirements of interest.

Figure 6 represents an output of the propagated

artifacts and its summary after the user selects one or
more types of secondary artifacts. In Figure 5, the user
selected all the artifact levels as the secondary artifacts to
visualize the impacts. After ‘generate button’, Catia then
produced a list of impacted methods, classes, packages,
test cases and requirements for each primary artifact
chosen earlier. In the summary table (Figure 5), all the
impacted artifacts associated to req4, req6 and req22
were shown in terms of counts, LOC and VG. Taking an
example of req4, this requirement had caused potential
effect to 40 methods out of 80 total methods in the
system. In terms of the impact metrics, these methods
took up LOC(349) and VG (101) out of total LOC (925)
and VG (250) respectively. Please note that no impacts
being described on req4, req7 and req12 over other
requirements as this situation is not allowed in our model.

Figure 5 : First user interface of CATIA

5.2 Some Discussions and Lessons Learnt
There are some knowledge and experience we would like
to highlight with respect to the implementation of our
prototype.
1. DLL files (4 packages)

DLL files only contain all the executable files as the
reusable software packages and no source code
available. As this is the case, there is no way for us to
neither using the McCabe nor CodeMentor to capture
the methods and classes in the DLL packages. Thus,
we treated the DLL files as special packages with no
metric values.

2. Self impact
There were cases in the (MxM) and (CxC)
relationships, a component only made an impact on
itself not to others. This is due to the fact that a
method or class was designed just to provide a
service rather than call invocation to others.

3. Non functional requirements (1 requirement)
There was a timing requirement, STD_REQ-02-19
stated that ”fuel inlet mechanism should respond in
less than 0.5 seconds on actions by a driver”. This
requirement had no impact on other classes or
methods. This is due to the fact that the timer is
produced by the kernel operating system not by any
other classes or methods. The result of timing may be
needed by some classes or methods for some tasks
e.g. in speed calculation, but no action being carried
out to check the violation of timing. The developers
verified this requirement manually by running a test

driver to spy the timing at the background mode. As
no program verification can be made on this
particular issue, we dropped this type of requirement
from our work.

6. Related Work
A number of requirement traceabilit

tools being cited in both the literature an
in the industry. Some other advance
Teamwork/RQT [15], RTM [16], an
provides the capabilities to include mec
parent and child relationships, functi
definition of keywords and attributes to
other system artifacts, ad-hoc and pred
requirements extraction from docume
report generation, and maintenance of i
allocation of requirements to system
functions.

Lindvall and Sandahl [12] prese
approach based on domain knowledge
analyse software change metrics re
analysis for resource estimates. Howeve
not consider automated concept locati
some change requests to the impacted
classes but no requirements and test
Sneed [18] constructs a repository to ha
tasks that link the code to testing and con
concept model seems to be too generali
the requirements, business rules, rep

service functions and data objects. The tool, called GEOS
is constructed on the basis of a relational database and
populated with meta-model on concept. Hypertext
techniques and ripple effects are used to identify the

Figure 6 : Output of requirements traceability
y approaches and
d as by-products

d tools such as
d TOORS [17]
hanisms to create
onal hierarchies,
requirements and
efined querying,
nts, customized

nformation about
 components or

nt a traceability
 to collect and

lated to impact
r, their work do

on. They relate
code in terms of
cases involved.

ndle maintenance
cept models. His
zed that includes
orts, use cases,

software interdependencies. Bianchi et al. [19] introduce
and experiment with several examples of traceability link
using ANALYST tool, with the aim of assessing how
effectively these links support impact analysis in object-
oriented environments and what effects they produce on
the accuracy of the maintenance process. Both [18,19]
works provide some good framework at coarse levels but
they do not associate with test cases and user
requirements.

Our work differs from the above in that we attempt to
integrate the software components that include the
requirements, test cases, design and code. Our model and
approach allow a component at one level to directly link
to other components of any levels. Another significant
achievement can be seen in its ability to support top down
and bottom up tracing from a component perspective.
This allows a maintainer to identify all the potential
effects before a decision can be made.

7. Conclusion and Future Work

Our current approach offers considerable leverage in
implementing a software visibility based on call
invocations. The traceability part of the documentation is

typically prepared manually by the software engineers
and very few attempt to establish links to the
implementation code. The crucial part of the traceability
is to establish and integrate the high level software
models with their implementation code that many
software maintenance tools tend to ignore.

This effort may need a close cooperation between the
project manager, designers, testers and developers as it
involves different responsibilities and software models.
However, having such an automated requirements
traceability would not only benefit both high-level and
low-level users of the software development and
maintenance, but also to support regression testing.

Our next attempt is to gear towards addressing the

change impact analysis, an important issue in software
maintenance. Change impact analysis require special
attention on its implicit, explicit links and some design
decisions as being explored by some researchers
[12,18,19]. For example, in the call invocation
relationships,

 M1 M2
 M4
M1 calls two other methods; M2 and M4. This means any
change made to M2 or M4 would have a potential impact
on M1. So, in the context of change impact analysis, we
have to work on the other way around by picking up a
callee and find its corresponding callers. In another
example, if class A is inherited from class B, then any
change made in class B may affect class A and all its
lower subclasses, but not to its upper classes. We need to
consider all other structural relationships such as
friendship, composition and aggregation and object
creation on account of the potential impacts.

Acknowledgements
This research is funded by the IRPA of Malaysian Plan
(RM-8) under vot no. 74075. The authors would like to
thank the Universiti Teknologi Malaysia, the University
of Durham, the Universiti Kebangsaan Malaysia and
individuals for their involvement, invaluable comments
and suggestions throughout the development and review
process.

References

[1] E. Tryggeseth, Report from an Experiment: Impact

of Documentation on Maintenance, Journal of
Empirical Software Engineering, Kluwer
Publishing, 1997, vol. 2(2), pp. 201-207.

[2] A. Bianchi, A.R. Fasolino, G. Visaggio, An
Exploratory Case Study of the Maintenance
Effectiveness of Traceability Models, IWPC, 2000,
pp. 149-158.

[3] B. Ramesh, Requirements traceability: Theory and
Practice, Annuals of Software Engineering, vol. 3,
1997, pp. 397-415.

[4] R.J. Turver, M. Munro, An Early impact analysis
technique for software maintenance, Journal of
Software Maintenance: Research and Practice,
Vol. 6 (1), 1994, pp. 35-52.

[5] B. Ramesh, M. Jarke, Toward Reference Models
for Requirements Traceability, IEEE Transactions
on Software Engineering, 27(1), January 2001, pp.
58-93.

[6] O. Gotel, A. Finkelstein, An Analysis of the
Requirements Traceability Problem, in
Proceedings of the First International Conference
on Requirements Engineering, Colorado, 1994, pp.
94-101.

[7] S. Ibrahim, N.B. Idris, A. Deraman, Case study:
Reconnaissance techniques to support feature
location using RECON2, Asia-Pacific Software
Engineering Conference, IEEE, Dec 2003, pp. 371-
378.

[8] http://www.mccabe.com
[9] http://www.gramatech.com/products/

 codesurfer/index.html
[10] S. Ibrahim, R.N. Mohamad, “Code Parser for

C++”, Technical report of Software Engineering,
CASE/August 2004/LT2, August, 2004.

[11] G. Booch, I. Jacobson, J. Rumbaugh, UML
Distilled Applying the Standard Object Modeling
Language (Addison-Wesley, 1997).

[12] M. Lindvall and K. Sandahl, Traceability Aspects
of Impacts Analysis in Object-Oriented System,
Journal of Software Maintenance Research And
Practice, vol. 10, 1998, pp. 37-57.

[13] V. Rajlich, N. Wilde, The Role of Concepts in
Program Comprehension, Proceedings of 10th
International Workshop on Program
Comprehension, IEEE, 2002, pp. 271-278.

[14] Joint Logistics Commanders on Computer
Resource Management, Overview and Tailoring
Guidebook on MIL-STD-498 (Arlington, 1996).

[15] McCausland C.D., A Case Study in Traceability,
Proceedings of the Colloquium by the Institution of
Electronic Engineers Professional Group Cl
(Software Engineering), London, 1991.

[16] Marconi Systems Technology, RTM Requirements
and Traceability Management, Arlington, VA.
1991.

[17] F.A.C. Pinheiro and J. Goguen, An Object-
Oriented Tool for Tracing Requirements, IEEE
Software, 1996, pp. 52-64.

[18] H.M. Sneed, Impact Analysis of maintenance tasks
for a distributed object-oriented system,
Proceedings of Software Maintenance, IEEE, 2001,
pp. 180-189.

[19] A. Bianchi, A.R. Fasolino, G. Visaggio, An
Exploratory Case Study of the Maintenance
Effectiveness of Traceability Models, IWPC, 2000,
pp. 149-158.

http://www.mccabe.com/

