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Abstract 
 
Requirements traceability as being mandated by many 
standards governing the development of systems (e.g. 
IEEE/EIA 12207) is undoubtedly useful to software 
maintenance. To many organizations, it is viewed as a 
measure of system quality and is treated as an important 
component of their efforts towards achieving process 
improvement (CMM). However, not much elaboration on 
what types of information needed and how a strategy to 
achieve this is described in the development standards and 
guidelines. In this paper, we present our approach in 
implementing a requirements traceability derived from  
system documentation. It provides visibility into a system 
composing of different artifacts that include requirements,  
test cases, design and code. Our approach supports the top 
down and bottom up traceability in response to tracing for 
the  ripple-effects. We developed a traceability tool, 
called Catia and applied it to a case study of system 
documentation and discussed the results. 
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1. Introduction 

 
Documentation is one of the important items in 

software maintenance. Tryggeseth [1] had demonstrated 
in his experiment that documentation significantly 
improves maintainer’s ability to understand a system and 
make efficient change to it. Despite this, many developers 
are still reluctant to use anything but the source code for 
maintenance tasks, as documentations are generally 
considered abstracts and not up-to-date. However, many 
agree that the use of documentation is more significant if 
the information it contains are traceable between software 
models [2]. We mean software models are the work 
products such as code, design and requirements that differ 
from one another in terms of its granularity. Code is a 

software model that emphasizes on the detailed 
granularity while requirements are another set of software 
model that describe a system from the user’s point of 
view. 

 
There is a need to relate from one model to another 

e.g. from a requirement to its implementation code or 
design to test cases. This is called traceability. Ramesh 
relates traceability as the ability to trace the dependent 
items within a model and the ability to trace the 
corresponding items in other models [3]. Pursuant to this, 
Turner and Munro [4] assume that a software traceability 
implies that all models of the system are consistently 
updated. Tracing such kind of traceability is called 
requirements traceability [3].    

 
Many software engineering standards governing the 

development of systems (e.g. IEEE/EIA 12207) 
emphasize the need of requirements traceability to be 
included into documentation and treat it as a quality factor 
towards achieving process improvement (CMM)[5]. The 
issue is that not much elaboration on what types of 
information needed and how a strategy to achieve this are 
described in the development standards and guidelines. 
The developers normally prepare some traceability 
relationships between software components at the high 
level abstracts and take least effort to integrate both the 
high level and the low level software models e.g. a 
requirement to its implementation code or vice versa. The 
ability to implement such a requirements traceability 
would allow a maintainer or management to visualize the 
impacts prior to actual change. This will greatly help one 
take appropriate actions with respect to decision making, 
schedule plans, cost and resource estimates. 

 
In this paper, we present an implementation of 

requirements traceability to support visibility into the 
system environment that involves four main sets of 
artifacts, namely requirements, test cases, design and 



code. These artifacts are made available from the 
documentation. Our approach of requirements traceability 
provides the ability to not only relate a requirement to its 
implementation code but also to any other artifact levels. 
It does provide ability for top-down and bottom-up 
tracing between artifacts.   

 
This paper is organized as follows: Section 2 presents 

an overview of our traceability model. Section 3 discusses 
our mechanism to manage a requirements traceability 
followed by the total traceability approach in section 4. 
Section 5 presents a case study with some results and 
lessons learnt. Section 6 presents some related works. 
Lastly, section 7 gives a conclusion and future work. 
 
2. A Traceability Model 

 
Figure 1 reflects the notion of our model to establish 

the relationships between artifacts. The thick arrows 
represent the direct relationships while the thin arrows 
represent the indirect relationships. Both direct and 
indirect relationships can be derived from the static or 
dynamic analysis of component relationships. Direct 
relationships apply actual values of two components, 
while indirect relationships apply intermediate values of 
relationship e.g. using a transitive closure.  
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Static relationships are software traces between 

components resulting from a study of static analysis on 
the source code and other related models.  Dynamic 
analysis on the other hand, results from the execution of 
software to find traces such as executing test cases to find 

the impacted codes. We classify our model into two 
categories; vertical and horizontal traceability. Vertical 
traceability refers to the association of dependent items 
within a model and horizontal traceability refers to the 
association of corresponding items between different 
models [6]. 
 
2.1 Horizontal Traceability  

We regard horizontal traceability as a traceability 
model of inter-artifacts such that each component (we call 
it as an artifact) in one level provides links to other 
components of different levels.  Figure 2 shows a 
traceability from the point of view of requirements. For 
example, R1 is a requirement that has direct impacts on 
test cases T1 and T2. R1 also has direct impacts on the 
design D1, D2, D3 and on the code component C1, C3, 
C4. Meanwhile T1 has its own direct impact on D1 and 
D1 on C4, C6, etc which reflect the indirect impacts to 
R1. The same principle also applies to R2. R1 and R2 
might have an impact on the same artifacts e.g. on T2, 
D3, C4, etc. Thus, the system impact can be interpreted as 
follows. 
S = (G, E) 
G = GR ∪ GD ∪ GC ∪ GT 
E = ER ∪ ED ∪ EC ∪ ET 
Where,  
S - represents a total impact in the system 

DESIGN REQUIREMENT G - represents an artifact of type requirements (GR), 
design (GD), code (GC) or test cases (GT). 
E - represents the relationships between artifacts from the 
point of view of an artifact of interest. This is identified 
by ER, ED, EC and ET. 
Each level of horizontal relationship can be derived in the 
following perspectives. 

TEST CASES CODE i) Requirement Traceability 
ER ⊆ GR x SGR 
SGR = GD ∪ GC ∪ GT 
A requirement component relationship (ER) is defined as 
a relationship between requirement (GR) with other 
artifacts (SGR) of different levels. 
ii) Design Traceability 
ED ⊆ GD x SGD  
SGD = GR ∪ GC ∪ GT 

 

Figure 2: Traceability from the requirement perspective 
 Figure 1 : Meta-model of traceability system



A design component relationship (ED) is defined as a  
relationship between a design component (GD) with other 
artifacts (SGD) of different levels. GD can be 
decomposed into more detailed design components, if 
necessary.  
iii) Test case Traceability 
ET ⊆ GT x SGT 
SGT = GR ∪ GD ∪ GC 
A test case component relationship (ET) is defined as a 
relationship between a test case (GT) with other artifacts 
(SGT) of different levels.   
iv) Code Traceability 
EC ⊆ GC x SGC 
SGC = GR ∪ GD ∪ GT 
A code component relationship (EC) is defined as a 
relationship between a code component (GC) with other 
artifacts (SGC) of different levels. Code can be 
decomposed into more detailed components. 

 
2.2 Vertical Traceability  

We regard a vertical traceability model for intra-
artifacts of which an artifact provides links to other 
components within the same level of artifacts. In 
principle, we consider the following as our vertical 
platforms.  

a) Requirement level  
b) Test case level 
c) Design level 
d) Code level  

Requirement level here refers to the functional 
requirements. While the test case level refers to the test 
descriptions that describes all possible situations that need 
to be tested to fulfill a requirement. In some systems, 
there might exist some requirements or test cases being 
further decomposed into their sub components. However, 
to comply with our model, each is uniquely identified.  To 
illustrate this phenomenon, let us consider the following 
example. 
Req#: 5  
Code : SRS_REQ-02-05 
Description: The driver presses an “Activation” button to 
activate the AutoCruise function.  

 

Code 

Requirement 

Documentations 

Design 

3. Observe 
traces 

4. Generate 
traces 

5. Satisfy
goal 1. Select 

test cases 

Test Cases 

The test cases involved : 
1) Test case #: 1  
     Code: TCASE-12-01 
     Description : Launch the Auto Cruise with speed is > 

80 km/hr. 2. Clarify  
knowledge 

 
i) Test case#: 1.1  
Code : TCASE-12-01-01  
Description: Launch the Auto Cruise while not 
on fifth gear.  
ii) Test case#: 1.2 4. Generate 

traces Code : TCASE-12-01-02 
Description: Launch the Auto Cruise while on 
fifth gear.  

2)  Test case#: 2 
      Code : TCASE-12-02 

Description: Display the LED with a warning 
message “In Danger” while on auto cruise if the 
speed is >= 150 km/h. 

We can say that Req#5 requires three test cases instead of 
two as we need to split the group of test case#1  into its 
individual test case#1.1 and test case#1.2.  In the design 
and code, again there might exist some ambiguities of 
what artifacts should be represented as both may consist 
of some overlapping components e.g. should the classes 
be classified in the design or code ? To us, this is just a 
matter of development choice.    
 

Design level can be classified into high level design 
abstracts (e.g. collaboration design models) and low level 
design abstracts (e.g. class diagrams) or a combination of 
both. In our implementation, we pay less attention on high 
level design abstracts to derive a traceability as this needs 
more research and would complicate our works.  We 
apply the low level design abstracts that contain the 
software packages and classes with their interactions. 
While, the code is to include all the methods and their 
interactions.   
  
3. Approach  
3.1 Hypothesize Traces 

We believe that there exists some relationships 
among the software artifacts in a system. We need to trace 
and capture their relationships somehow not only within 
the same level but also across different levels of artifacts 
before a impact analysis can be implemented. The process 
of tracing and capturing these artifacts is called 
hypothesizing traces. Hypothesized traces can often be 
elicited from system documentation or corresponding 
models. It is not important in our approach whether the 
hypotheses should be performed by manually through the 
available documentations and software models or by 
automatically with the help of a tool. Figure 3 reflects one 
way of hypothesizing traces. It can be explained in the 
following steps.  

 Figure 3 : Hypothesized and observed traces 



1. For each requirement, identify some selected test 
cases (RxT). 

2. Clarify this knowledge with the available 
documentation, if necessary. 

3. Run a test scenario (dynamic analysis) for each test 
case based on the available test descriptions and 
procedures, and capture the potential effects in terms 
of the methods involved (TxM). We developed a tool 
support, called CodeMentor to identify the impacted 
code by instrumenting the source code prior to its 
execution [7].   

4. Perform a static analysis on the code to capture the 
call relationships of method-to-method (MxM) and 
class-to-class (CxC) dependencies.  

 
We experimented using tool supports such as 

McCabe [8] and Code Surfer [9] to help capture the above 
program dependencies. However, other manual works as 
well as the need for other types of information saw us 
developing our own code parser called TokenAnalyzer 
[10].  
 
3.2 Traceability Approach 

Intrinsically, traceability provides a platform for 
impact analysis. We can classify three techniques of 
traceability.  

1. Traceability via explicit links 
Explicit links provide a technical means of 
explicit traceability e.g. traceability associated 
with the basic inter-class relationships in a class 
diagram modelled using UML [11]. 

2. Traceability via name tracing 
Name tracing assumes a consistent naming 
strategy and is used when building models. It is 
performed by searching items with names similar 
to the ones in the starting model [12]. 

3. Traceability via domain knowledge and concept 
location. 
Domain knowledge and concept location are 
normally used by experienced software 
developer tracing concepts using his knowledge 
about how different items are interrelated [13].  

 
We apply 1) and 3) in our traceability approach. We 

obtain the explicit links of component relationships from 
the hypothesized traces and establish a set of matrices to 
implement the traceability between components in the 
system. We use concept location to establish links 
between requirements and test cases with the 
implementation code. This process requires a maintainer 
to understand the domain knowledge of the system he 
wants to modify. With this prior knowledge of a 
requirement, a maintainer should be able to decompose it 
into more explicit items in terms of classes, methods or 
variables. These explicit items represent a requirement or 
a concept that are more traceable in the code [13]. With 
the help of test cases in hand, our approach via 
codeMentor should be able to support a maintainer tracing 

and locating the ripple-effects of the defined items in 
terms of the impacted methods and classes. 

 
Name tracing is another technique for implementing 

traceability. It can be used to locate the corresponding 
items of a model with another model e.g. to locate the 
occurrences of an item of similar name in a requirement 
with the ones that exist in the implementation code in an 
effort to establish some links between requirements and 
code. However, this strategy is not practical in our context 
of study. The reason is that name tracing cannot be used 
to search for structural relationships of program 
dependencies.     
 
4. Total traceability 

 
Figure 4 describes the implementation of our total 

traceability. The horizontal relationships can occur at the 
cross boundaries as shown by the thin solid arrows. The 
crossed boundary relationship for the requirements-test 
cases is shown by RxT, test case-code by TxM, and so 
forth. The vertical relationships can occur at the code 
level (MxM- method interactions) and design level (CxC- 
class interactions, PxP- package interactions) 
respectively.  

 
 
 

The method interactions can simply be transformed 
into class interactions and package interactions by the use 
of mapping mechanism based on the fact that a package is 
made up of one or more classes and a class is made up of 
one or more methods. The thick doted lines represent the 
total traceability we need to implement in either top down 
or bottom up tracing. By top-down tracing, we mean we 
can identify the traceability from the higher level artifacts 
down to its lower levels e.g. from a test case we can 
identify its associated implementation code. For bottom-
up tracing, it allows us to identify the impacted artifacts 
from a lower to a higher level of artifacts e.g. from a 
method we can identify its impacted test cases and 
requirements.  
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Figure 4 : System artifacts and their links 

 



The table 1 represents an example of mapping table 
of our system to support traceability. Each method (i.e. 
member function in C++) is assigned an ID and a method 
name. CSU column represents the class numbers and CSC 
column represents the package numbers. It can be 
interpreted as e.g. driving StationHandler() is a method 
and the only method of class#1 that resides in a 
package#1. getState() is a method of class#2 and still 
belongs to package#1, etc.  

 
 

We assign each method with some LOC (lines of 
code) and VG (value of program complexity) of which 
these metrics are made available  before hand with the 
help of a code parser, e.g. McCabe tool. We need to 
capture these metrics for each class and use classes to 
compute the LOC and VG for packages. We need to store 
the similar mapping scheme for classes and packages but 
in separate  tables. This information is required as the 
system goes along the way tracing for potential effects, it 
can collect and sum up the metrics of the impacted 
artifacts. 
 
4.1 High Level Traceability 

We relate the high level traceability as a tracing 
involving the requirements and test cases. This tracing is 
based on dynamic analysis of program execution via test 
scenarios. In our case study, each requirement is 
characterized by some test cases as explained in the 
previous section 2.2. As we had the RxT and TxM from 
the hypothesized traces earlier, we can produce the RxM 
using a transitive closure.  
(RxT) and (TxM)  (RxM) 
We use the underlying RxM to create a RxC and RxP by 
upgrading the methods into classes and classes into 
packages with the help of the same mapping mechanism. 
The same principle applies to bottom up tracing but now 
we use the underlying MxR (i.e. the inverted RxM table) 

and transforms it into CxR and PxR. The same principle 
applies to the test cases with their low level artifacts.  
 
4.2 Low Level Traceability 

We classify the low level traceability as a tracing that 
can be established around the code and design levels. This 
includes the methods, classes and packages. The impacts 
can be established between components based on 
dependence graphs of  MxM such that an impact to a 
method implies an impact to its class and an impact to a 
class implies an impact to its package it belongs to. This 
dependency makes it possible to transform the MxM into 
MxC, CxM, CxC, CxP, PxC and PxP. At the low 
traceability level, the vertical links can occur between a) 
method-method, b) class-class, and c) package-package.  
While, the horizontal links can occur across boundaries 
between a) method-class, b) method-package, c) class-
package. 
 
5. Case Study: OBA 

To implement our model, we applied it to a case 
study of software project, called the Automobile Board 
Auto Cruise (OBA).  OBA is an embedded software 
system of 3k LOC with 480 pages of documentation 
developed by the M.Sc group-based students  of computer 
science at the Centre For Advanced Software 
Engineering, university of Technology Malaysia. OBA 
was built as an interface to allow a driver to interact with 
his car while on auto cruise mode such as accelerating 
speed, suspending speed, resuming speed, braking a car, 
mileage maintenance, and changing modes between the 
auto cruise and non-auto cruise. The project was built 
with complete project management and documentations 
adhering to DoD standards, MIL-STD-498+[14].  The 
software project was built based on the UML 
specification and design standards [11] with a software 
written in C++. The documentations provided us with 
some useful information on artifact relationships, e.g. we 
obtained the requirement-test case relationships (RxT) 
from the SRS (Software Requirement Specification) 
document, the class-package relationships (CxP) from the 
SDD (Software Design Description) document and test 
procedures from the STD (Software Test Description) 
document. 

Table 1: A mapping table 

 
5.1 Impact Generation 

We identified from the OBA project, 46 
requirements, 34 test cases, 12 packages, 23 classes and 
80 methods.  Our system, Catia assumes that a user 
request has already been translated and expressed in terms 
of the acceptable artifacts i.e. requirements, classes, 
methods or test cases. Catia was designed to manage the 
potential effect of one type of artifacts at a time.  
 
MIL-STD-498+ - This standard was formally closed by the US 
DoD in 1998 and adopted a new standard, the IEEE/EIA 12207 
in replacement. Nevertheless, most of the detailed data items of 
MIL-STD-498 were absorbed into the new standard and 
remained intact. 

 



 

 
The system works such that given an artifact as a 

primary impact, Catia can determine its effects on other 
artifacts (secondary artifacts) in either top-down or 
bottom-up tracing.   Figure 5 shows an initial user entry 
into the Catia system by selecting a type of primary 
artifacts followed by a set of the detailed artifacts.  The 
user selected requirements as the primary artifact and 
chose the req4, req6 and req22 as the detailed 
requirements of interest.  

 
Figure 6 represents an output of the propagated 

artifacts and its summary after the user selects one or 
more types of secondary artifacts. In Figure 5, the user 
selected all the artifact levels as the secondary artifacts to 
visualize the impacts. After ‘generate button’, Catia then 
produced a list of impacted methods, classes, packages, 
test cases and requirements for each primary artifact 
chosen earlier. In the summary table (Figure 5), all the 
impacted artifacts  associated to req4, req6 and req22 
were shown in terms of counts, LOC and VG. Taking an 
example of req4, this requirement had caused potential 
effect to 40 methods out of 80 total methods in the 
system. In terms of the impact metrics, these methods  
took up LOC(349)  and VG (101) out of total LOC (925) 
and VG (250) respectively. Please note that no impacts 
being described on req4, req7 and req12 over other 
requirements as this situation is not allowed in our model. 
 
 
 

 
 

Figure 5 : First user interface of CATIA 

5.2 Some Discussions and Lessons Learnt 
There are some knowledge and experience we would like 
to highlight with respect to the implementation of our 
prototype. 
1. DLL files (4 packages) 

DLL files only contain all the executable files as the 
reusable software packages and no source code 
available. As this is the case, there is no way for us to 
neither using the McCabe nor CodeMentor to capture 
the methods and classes in the DLL packages. Thus, 
we treated the DLL files as special packages with no 
metric values.  

2. Self impact  
There were cases in the (MxM) and (CxC) 
relationships, a component only made an impact on 
itself not to others. This is due to the fact that a 
method or  class was designed just to provide a 
service rather than call invocation to others.  

3. Non functional requirements (1 requirement) 
There was a timing requirement, STD_REQ-02-19 
stated that ”fuel inlet mechanism should respond in 
less than 0.5 seconds on actions by a driver”. This 
requirement had no impact on other classes or 
methods. This is due to the fact that the timer is 
produced by the kernel operating system not by any  
other classes or methods. The result of timing may be 
needed by some classes or methods for some tasks 
e.g. in speed calculation, but no action being carried 
out to check the violation of timing. The  developers 
verified this requirement manually  by running a test 

 



driver to spy the timing  at the background mode. As 
no program verification can be made on this 
particular issue, we dropped this type of requirement 
from our work. 

6. Related Work 
A number of requirement traceabilit

tools being cited in both the literature an
in the industry. Some other advance
Teamwork/RQT [15], RTM [16], an
provides the capabilities to include mec
parent and child relationships, functi
definition of keywords and attributes to 
other system artifacts, ad-hoc and pred
requirements extraction from docume
report generation, and maintenance of i
allocation of requirements to system
functions.  
 

Lindvall and Sandahl [12] prese
approach based on domain knowledge
analyse software change metrics re
analysis for resource estimates. Howeve
not consider automated concept locati
some change requests to the impacted 
classes but no requirements and test 
Sneed [18] constructs a repository to ha
tasks that link the code to testing and con
concept model seems to be too generali
the requirements, business rules, rep

service functions and data objects. The tool, called GEOS 
is constructed on the basis of a relational database and 
populated with meta-model on concept. Hypertext 
techniques and ripple effects are used to identify the 

 

Figure 6 : Output of requirements traceability
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software interdependencies. Bianchi et al. [19] introduce 
and experiment with several examples of traceability link 
using ANALYST tool, with the aim of assessing how 
effectively these links support impact analysis in object-
oriented environments and what effects they produce on 
the accuracy of the maintenance process. Both [18,19] 
works provide some good framework at coarse levels but 
they do not associate with test cases and user 
requirements.    
 

Our work differs from the above in that we attempt to 
integrate the software components that include the 
requirements, test cases, design and code. Our model and 
approach allow a component at one level to directly link 
to other components of any levels. Another significant 
achievement can be seen in its ability to support top down 
and bottom up tracing from a component perspective. 
This allows a maintainer to identify all the potential 
effects before a decision can be made. 
 
7. Conclusion and Future Work 
 

Our current approach offers considerable leverage in 
implementing a software visibility based on call 
invocations. The traceability part of the documentation is 



typically prepared manually by the software engineers 
and very few attempt to establish links to the 
implementation code. The crucial part of the traceability 
is to establish and integrate the high level software 
models with their implementation code that many 
software maintenance tools tend to ignore. 
 

This effort may need a close cooperation between the 
project manager, designers, testers and developers as it 
involves different responsibilities and software models. 
However, having such an automated requirements 
traceability would not only benefit both high-level and 
low-level users of the software development and 
maintenance, but also to support regression testing.  

 
Our next attempt is to gear towards addressing the 

change impact analysis, an important issue in software 
maintenance. Change impact analysis require special 
attention on its implicit, explicit links and some design 
decisions as being explored by some researchers 
[12,18,19]. For example, in the call invocation 
relationships,  

 M1  M2 
    M4 
M1 calls two other methods; M2 and M4. This means any 
change made to M2 or M4 would have a potential impact 
on M1. So, in the context of change impact analysis, we 
have to work on the other way around by picking up a 
callee and find its corresponding callers. In another 
example, if class A is inherited from class B, then any 
change made in class B may affect class A and all its 
lower subclasses, but not to its upper classes. We need to 
consider all other structural relationships such as 
friendship, composition and aggregation and object 
creation on account of the potential impacts.  
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