
A REQUIREMENTS TRACEABILITY TO SUPPORT
CHANGE IMPACT ANALYSIS

Suhaimi Ibrahim,

Norbik Bashah Idris
Centre For Advanced Software

Engineering,
Universiti Teknologi Malaysia,

Kuala Lumpur, Malaysia
*suhaimi@case.utm.my

norbik@case.utm.my

Malcolm Munro
Department of Computer Science,

University of Durham,
United Kingdom

malcolm.munro@durham.ac.uk

Aziz Deraman
Fac. of Technology & Infor. System,

Universiti Kebangsaan Malaysia,
Selangor, Malaysia
a.d@pkrisc.ukm.my

Abstract

It is inevitable that a software undergoes some
change in its lifetime. With some change requests
comes a need to estimate the scope (e.g. size and
complexity) of the proposed changes and plan
for their implementation. Software traceability
and its subsequent impact analysis help relate
the consequences or ripple-effects of a proposed
change across different levels of software
models. In this paper, we present a software
traceability approach to support change impact
analysis of object oriented software. The
significant contribution in our traceability
approach can be observed in its ability to
integrate the high level with the low level
software models that involve the requirements,
test cases, design and code. Our approach
allows a direct link between a component at one
level to other components of different levels. It
supports the top down and bottom up traceability
in response to tracing for the potential effects.
We developed a software prototype called Catia
to support C++ software, applied it to a case
study of an embedded system and discuss the
results.

Keywords: Software traceability, impact
analysis, change request, concept location

1. Introduction

It is inevitable that a software undergoes some
change in its lifetime. With some change
requests comes a need to estimate the scope (e.g.
size and complexity) of the proposed changes
and plan for their implementation. The main

problem to a maintainer is that seemingly small
changes can ripple throughout the system to
cause substantial impact elsewhere. A maintainer
generally accomplishes change by analyzing the
existing dependencies or relationships among the
software components composing the software
system.

Software change impact analysis [1], or impact
analysis for short, offers considerable leverage in
understanding and implementing change in the
system because it provides a detailed
examination of the consequences of changes in
software. Impact analysis provides visibility into
the potential effects of the proposed changes
before the actual changes are implemented. The
ability to identify the change impact or potential
effect will greatly help a maintainer or
management to determine appropriate actions to
take with respect to change decision, schedule
plans, cost and resource estimates.

To implement impact analysis at a broader
perspective is considerably hard to manage as it
involves traceability within and across different
models in the software life-cycle, such as from
the design model to code model. Ramesh relates
traceability as the ability to trace the dependent
items within a model and the ability to trace the
corresponding items in other models [2]. Such
kind of traceability is called requirements
traceability [2]. Pursuant to this, Turner and
Munro [3] assume that a system traceability
implies that all models of the software are
consistently updated.

Research on requirements traceability has been
widely explored since the last two decades that

 1

supports many applications such as
redocumentation, visualization, reuse, etc.
Traceability is fundamental to the software
development and maintenance of large system. It
shows the ability to trace from high level
abstracts to low level abstracts e.g. from a
requirement to its implementation code. The fact
about this traceability model is that if the
component relationships are too coarse, they
must be decomposed to understand complex
relationships. On the other hand, if they are too
granular, it is difficult to reconstruct them into
more recognized, easily understood software
work products [4].

We would like to explore a requirements
traceability for change impact analysis from
which we should be able to capture the impacts
of a proposed change. What we mean a proposed
change is a target component that needs to be
modified as a result of change request. Change
request is initiated by the client or internal
development staff due to the need to make a
change in the software system. It should be
translated into some explicit and more
understandable items before a change impact
analysis can be implemented.

This paper is organized as follows: Section 2
presents an overview of our traceability model.
Section 3 discusses our approach to handle the
artifacts and change impact analysis followed by
the traceability techniques. Section 4 discusses
our total traceability approach. Section 5 presents
our case study and followed by some results and
discussions. Section 6 presents some related
work. Lastly, section 7 gives a conclusion and
future work.

2. A Traceability Model

Figure 1 reflects the notion of our model to
establish the relationships between artifacts. The
thick arrows represent the direct relationships
while the thin arrows represent the indirect
relationships. Both direct and indirect
relationships can be derived from static or
dynamic analysis of component relationships.
Direct relationships apply actual values of two
components, while indirect relationships apply
intermediate values of relationship e.g. using a
transitive closure.

Static relationships are software traces between
components resulting from a study of static

analysis on the source code and other related
models. Dynamic analysis on the other hand,
results from execution of software to find traces
such as executing test cases to find the impacted
codes. We classify our model into two
categories; vertical and horizontal traceability.
Vertical traceability refers to the association of
dependent items within a model and horizontal
traceability refers to the association of
corresponding items between different models
[5].

Figure 1: Meta-model of traceability system

2.1 Horizontal Traceability
We regard horizontal traceability as a traceability
model of inter-artifacts such that each
component (we call it as an artifact) in one level
provides links to other components of different
levels. Figure 2 shows a traceability from the
point of view of requirements. For example, R1
is a requirement that has direct impacts on test
cases T1 and T2. R1 also has direct impacts on
the design D1, D2, D3 and on the code
component C1, C3, C4. Meanwhile T1 has its
own direct impact on D1 and D1 on C4, C6, etc
which reflect the indirect impacts to R1. The
same principle also applies to R2. R1 and R2
might have an impact on the same artifacts e.g.
on T2, D3, C4, etc. Thus, the system impact can
be interpreted as follows.
S = (G, E)
G = GR ∪ GD ∪ GC ∪ GT
E = ER ∪ ED ∪ EC ∪ ET
Where,
S - represents a total impact in the system
G - represents an artifact of type requirements
(GR), design (GD), code (GC) or test cases (GT).
E - represents the relationships between artifacts
from the point of view of an artifact of interest.
This is identified by ER, ED, EC and ET.

Each level of horizontal relationship can be
derived in the following perspectives.
i) Requirement Traceability
ER ⊆ GR x SGR

REQUIREMENT

TEST CASES CODE

DESIGN

 2

T2

R1

D3
D2

C1

C3

T1

T3

R2

D4

D3D1
D1

C6
C4

C4

C5

C4

C2

SGR = GD ∪ GC ∪ GT
A requirement component relationship (ER) is
defined as a relationship between requirement
(GR) with other artifacts (SGR) of different
levels.

ii) Design Trace
ED ⊆ GD x SGD
SGD = GR ∪ G
A design compo
as a relationsh
(GD) with oth
levels. GD c
more detailed de
iii) Test case Tra
ET ⊆ GT x SGT
SGT = GR ∪ GD
A test case c
defined as a re
(GT) with othe
levels.
iv) Code Tracea
EC ⊆ GC x SGC
SGC = GR ∪ GD
A code compon
as a relationsh
(GC) with othe
levels. Code ca
more detailed co

2.2 Vertical T

We regard a ver
artifacts of whic
other compone
artifacts. In prin
as our vertical p

a) Requirem
b) Test cas
c) Design l
d) Code lev

Requirement level here refers to the functional
requirements. While the test case level refers to
the test descriptions that describes all possible
situations that need to be tested to fulfill a

Figure 2: Traceability from the requirement perspective

ability

C ∪ GT
nent relationship (ED) is defined
ip between a design component
er artifacts (SGD) of different
an be further decomposed into
sign components, if necessary.
ceability

 ∪ GC

omponent relationship (ET) is
lationship between a test case
r artifacts (SGT) of different

bility

 ∪ GT

ent relationship (EC) is defined
ip between a code component
r artifacts (SGC) of different
n be further decomposed into
mponents.

raceability

tical traceability model for intra-
h an artifact provides links to

nts within the same level of
ciple, we consider the following
latforms.

ent level
e level
evel
el

requirement. In some systems, there might exist
some requirements or test cases being further
decomposed into their sub components.
However, to comply with our model, each is
uniquely identified. To illustrate this
phenomenon, let us consider the following
example.
Req#: 5
Code : SRS_REQ-02-05
Description: The driver presses an “Activation”
button to activate the AutoCruise function.
The test cases involved :
1) Test case #: 1
 Code: TCASE-12-01
 Description : Launch the Auto Cruise with

speed > 80 km/hr.
i) Test case#: 1.1
Code : TCASE-12-01-01
Description: Launch the Auto Cruise
while not on fifth gear.
ii) Test case#: 1.2
Code : TCASE-12-01-02
Description: Launch the Auto Cruise
while on fifth gear.

2) Test case#: 2
 Code : TCASE-12-02

Description: Display the LED with a
warning message “In Danger” while on auto
cruise if the speed is >= 150 km/h.

We can say that Req#5 requires three test cases
instead of two as we need to split the group of
test case#1 into its individual test case#1.1 and
test case#1.2.

3

In the design and code, again there might exist
some ambiguities of what artifacts should be
represented as both may consist of some
overlapping components e.g. should the classes
be classified in the design or code ? To us, this is
just a matter of development choice.

Design level can be classified into high level
design abstracts (e.g. collaboration design
models) and low level design abstracts (e.g. class
diagrams) or a combination of both. In our
implementation, we pay less attention on high
level design abstracts to derive a traceability as
this needs more research and would complicate
our works. We apply the low level design
abstracts that contain the software packages and
class interactions. While, the code is to include
all the methods, their contents and interactions.

3. Approach
3.1 Hypothesize Traces
We believe that there exists some relationships
among the software artifacts in a system. We
need to trace and capture their relationships
somehow not only within the same level but also
across different levels of artifacts before a impact
analysis can be implemented. The process of
tracing and capturing these artifacts is called
hypothesizing traces.

Hypothesized traces can often be elicited from
system documentation or corresponding models.
It is not important in our approach whether the
hypotheses should be performed by manually
through the available documentations and
software models or by automatically with the
help of a tool. Figure 3 reflects one way of
hypothesizing traces. It can be explained in the
following steps.

1. For each requirement, identify some selected

test cases (RxT).
2. Clarify this knowledge with the available

documentation, if necessary.
3. Run a test scenario (dynamic analysis) for

each test case based on the available test
descriptions and procedures, and capture the
potential effects in terms of the methods
involved (TxM). Methods are the member
functions in C++. We developed a tool
support, called CodeMentor to identify the
impacted code by instrumenting the source
code prior to its execution [6].

4. Perform a static analysis on the code to
capture the class-class (CxC), method-class

(MxC), class-method (CxM) and method-
method (MxM) dependencies.

We experimented using tool supports such as
McCabe [7] and Code Surfer [8] to help capture
the above program dependencies. However,
other manual works as well as the need for other
types of information saw us developing our own
code parser called TokenAnalyzer [9].

3.2 Impact analysis
Some techniques are available to address impact
analysis in code such as call graphs, data flows,
ripple-effects and dependence graphs of program
slicing [10]. However, the way these techniques
are used may vary depending on the problem
being addressed. In our case, we use the ripple-
effects of call graphs and dependence graphs to
manage impact analysis. We need to analyze
from the program dependencies which artifacts
cause effect to which artifacts. For example, in a
method-to-method relationship of call
invocations

M1 M2
 M4
M1 calls two other methods; M2 and M4. This
means any change made to M2 or M4 would
have a potential effect on M1. So, in our context
of impact analysis, we have to work on the other
way around by picking up a callee and finding its
corresponding callers for its potential effects. In
other word, a change made to a callee may have
a potential effect or ripple effect on its callers.

Code

Requirement

Documentations

Design

3. Observe
traces

4. Generate
traces

5. Satisfy
goal 1. Select

test cases

Test Cases

2. Clarify
knowledge

4. Generate
traces

Figure 3 : Hypothesized and observed traces

 4

Table I: Structural relationships in C++
Relationships Definitions Examples
Call
(MxM)

An operation
(method) of the
first class calls
an operation of
the second one.
-----Impact -----
a1() b1()

class B
{void b1();}
class A {
 void a1() {
 B test;
 test.b1();}
 }

Composition
(CxC)

A class contains
a data member
of some other
class type.
-----Impact -----
A B

class B {};
class A
{
 B test;
}

Create
(CxM)

Some operation
of the first class
creates an
object of the
second class
(instantiation) .
-----Impact -----
a1() B

class B {};
class A {
 void a1()
 {
 B t;
 }
}

Friendship
i) (CxC)
ii) (MxC)

Dependency
from two
classes.
-----Impact -----
i) A B
ii) A c1()

class B{};
class A {
 friend class
B;
friend int
C:: c1();
}

Uses
(CxM)

Data uses
another data of
different
classes.
-----Impact -----
 a1() B
 a1() C

class B
{int k;…}
class C
{int m;…}
class A {
 B b; C c;
void a1()
{int m=b.k
 + c.m; }
}

Inheritance
(CxC)

Inheritance
relation among
classes.
-----Impact -----
A B

class B {};
class A :
public B
{
}

Association
(CxM)

A class contains
an operation
with formal
parameters that
have some class
type.
-----Impact -----
a1() B

class B{};
class A {
 void a1 (B*
par =0);
}

Aggregation
(CxM)

A class contains
data members
of pointer
(reference) to
some other
class.
-----Impact -----
a1() B

class B {};
class A {
void a1()
 {
 B* test;
 }
}

Define
i) (MxC)
ii) (CxM)

A class contains
data members
and member
functions.
-----Impact -----
 i) A a1()
 ii) a1() A

Class A
{
Void a1();
}

In another example, if class A is inherited from
class B, then any change made in class B may
affect class A and all its lower subclasses, not to
its upper classes. Table I presents the types of
relationship, with descriptions and examples of
all possible dependencies in C++ that can
contribute to change impact. In call relationship,
there exists a method-method relationship as the
called method b1() may affect the calling method
a1(). In composition relationship, test is a data
member of class B, would imply a change in B
may affect class A, in a class-class relationship.

In create relationship, a change made in class B
would affect the creation of objects in method
a1(). Thus, we can say that class B may affect
method a1() in a method-class relationship. In
friend relationship, two types of friendship can
occur, namely class friendship and method
friendship. Class friendship results in a class-
class relationship as it allows other class to
access its class private attributes. While, method
friendship results in a method-class relationship
as it allows a method of other class to access its
class private attributes.

In use relationship, we consider the use of data
(i.e. variables or data members in C++) in the
data assignment. Our objective here is to apply
the use relationships that provide links between
components of different methods and classes. In
Table I, the use relationship involves data from
other classes to implement a data assignment i.e.
k and m from class B and C respectively. So, the
class B and C would give impact to method a1()
in a class-method relationship.

In Association relationship, a class contains an
operation with formal parameters that have some
class type. A change of class type in B would

 5

affect method a1() in method-class relationship.
In aggregation relationship, a class contains data
members of pointer (reference) to some other
class. So, a change in class B may affect class A
in method-class relationship. Lastly, in define
relationship observes i) a method-class
relationship when one or more methods are
defined in a class, so any change in a method
simply affects its class ii) a class-method
relationship when a change in a class implies an
impact to its methods.

Our code parser, TokenAnalyzer was specially
designed and developed to capture all these
dependencies and form the designated tables of
method-method, method-class, class-method and
class-class relationships.

From our analysis on program dependencies, we
can conclude that the artifact relationships and
type relationships can be classified into several
categories as appeared in Table II. Please note
that for each artifact relationship, the types of
relationship may appear explicitly and implicitly.
Explicit relationships (shown in no brackets)
mean the direct relationships we captured and
obtained from the hypothesized traces. While,
implicit relationships (shown in brackets) denote
the indirect relationships we need to compute
from the lower level artifact relationships.

Table II: Classifications of artifact and type
relationships.
Artifact
relationships

Types of
relationship

CxC composition, class friendship,
inheritance, [create, association,
aggregation, method friendship,
uses, call, define]

CxM

MxC

create, association, aggregation,
uses, define [call]
method friendship, define [call]

MxM Call

The reason behind these indirect relationships is
if there is an impact to a data would imply an
impact to its method, and an impact to a method
would imply an impact to its class it belongs to.
Thus, there is a need to make them explicitly
defined by transforming the lower level matrices
into the higher level matrices e.g. to transform
the MxM into MxC, CxM, CxC. With these new
formations, we need to add into or update the
existing designated tables we captured earlier.
This gives us the broader potential effects as we
move on to higher levels. Our point here is to

allow users to visualize the impact at any level of
relationships. The computation on this
transformation is discussed in section 4.1.

3.3 Traceability Techniques
Intrinsically, traceability provides a platform for
impact analysis. We can classify three techniques
of traceability.

1. Traceability via explicit links
Explicit links provide a technical means
of explicit traceability e.g. traceability
associated with the basic inter-class
relationships in a class diagram
modeled using UML [11].

2. Traceability via name tracing
Name tracing assumes a consistent
naming strategy and is used when
building models. It is performed by
searching items with names similar to
the ones in the starting model [12].

3. Traceability via domain knowledge and
concept location.
Domain knowledge and concept
location are normally used by
experienced software developer tracing
concepts using his knowledge about
how different items are interrelated
[13].

We apply 1) and 3) in our traceability approach.
We obtain the explicit links of artifacts including
the transformation matrices. We use concept
location to establish links between requirements
and test cases with the implementation code.

This process requires a maintainer to understand
the domain knowledge of the system he wants to
modify. With this prior knowledge of a
requirement, a maintainer should be able to
decompose it into more explicit items in terms of
classes, methods or variables. These explicit
items represent a requirement or a concept that
are more traceable in the code [13]. With the
help of test cases in hand, our approach via
codeMentor should be able to support a
maintainer tracing and locating the ripple-effects
of the defined items in terms of the impacted
methods and classes.

Name tracing is another technique for
implementing traceability. It can be used to
locate the corresponding items of a model with
another model e.g. to locate the occurrences of
an item of similar name as appeared in a
requirement with the ones that exist in the

 6

implementation code in an effort to establish
some links between requirements and code.
However, this strategy is not practical in our
context of study. The reason is that name tracing
cannot be used to search for structural
relationships of program dependencies.

4. Total Traceability Approach

Figure 4 describes the implementation of our
total traceability approach. The horizontal
relationships can occur at the cross boundaries as
shown by the thin solid arrows e.g. the
requirements-test (RxT), test case-code (TxM),
and so forth. The vertical relationships can occur
at the code level (MxM - method interactions)
and design level (CxC - class interactions, PxP -
package interactions) respectively.

As
hy
Rx
(R
suc
im
com

Th
tra
int
bas
on
or
the
eith
do

traceability from the higher level artifacts down
to its lower levels e.g. from a test case we can
identify its associated implementation code.

For bottom-up tracing, it allows us to identify the
impacted artifacts from a lower to a higher level
of artifacts e.g. from a method we can identify its
impacted test cases and requirements. As the
system goes along the way tracing for potential
effects of either top-down or bottom-up
traceability, it collects and sums up the size of
metrics of the impacted artifacts. The metric
sizes are measured in terms of the LOC (lines of
code) and VG (value of program complexity).
We need to assign each method and class with
LOC and VG before hand with the help of a code
parser, e.g. using McCabe tool.

4.1 Computing Matrices

Some matrix tables were made available from
our previous hypothesized traces. In each table
of binary relationships, the row parts represent
the artifacts of interest while the column parts
are the potential effects. For example, in MxM
each method (in rows) produces some potential
effects on some other methods (in columns).
These potential effects are called footprints [14].
We apply a mapping table to create or transform
a lower level artifact relationship into its higher
level.

For example, to create a CxM table we first look
into the existing MxM matrix that for each
column, we use the mapping table to upgrade the
rowed methods into the rowed classes. This
means, the method footprints are automatically

Requirements

s

Test cases

(RxT)

(TxM) (MxC)

(RxC)

Design
(CxC),(PxP)

Top
Down Bottom

Up
(R
x
M)

(TxC),(TxP)

Code
(MxM)

Figure 4 : System artifacts and their link
 we had the RxT and TxM from the
pothesized traces earlier, we can compute the
M using a transitive closure,
xT) and (TxM) (RxM)
h that if R impacts T and T impacts M, then R

pacts M. The rest of the matrices can be
puted or created as discussed in Section 4.1.

e method interactions can simply be
nsformed into class interactions and package
eractions by the use of mapping mechanism
ed on the fact that a package is made up of

e or more classes and a class is made up of one
more methods. The thick doted lines represent
 total traceability we need to implement in
er top down or bottom up tracing. By top-

wn tracing, we mean we can identify the

upgraded into the class footprints. If no method
footprints exist during this transformation, means
no corresponding class footprints take place.
Similarly, we can establish the MxC
relationships such that for each row of MxM, we
upgrade the columned methods into the
columned classes carrying the method footprints
along to become the class footprints.

To create the CxC relationships, we can work on
the basis of either CxM or MxC. Taking the
CxM as an example, for each rowed class of
CxM we upgrade the columned methods into the
columned classes carrying the columned method
footprints along to become the columned class
footprints. On MxC, we can upgrade the rowed
methods of MxC into the rowed classes carrying
the rowed method footprints along to become the

7

rowed class footprints. We can apply the same
concept to create other matrices such as CxP,
PxC and PxP.

It is interesting to note that in our context of
study, MxC is not the same as CxM. The reason
is that the MxC is to see the potential effect of a
method over other parts of the code in terms of
classes. Whereas, the CxM is to see the potential
effect of a class over other parts of the code in
terms of methods. This is the reason why we
cannot apply a transitive closure to some
matrices. Similarly, We use the underlying RxM
to transform it into RxC and RxP by upgrading
the methods into classes and classes into
packages. The same principle applies to TxM to
transform it into TxC and TxP.

5. Case Study

To implement our model, we applied it to a case
study of software project, called the Automobile
Board Auto Cruise (OBA). OBA is an
embedded software system of 4k LOC with 480
pages of documentation developed by the M.Sc
group-based students of computer science at the
Centre For Advanced Software Engineering,
university of Technology Malaysia. OBA was

built as an interface to allow a driver to interact
with his car while on auto cruise mode such as
accelerating speed, suspending speed, resuming
speed, braking a car, mileage maintenance, and
changing modes between the auto cruise and
non-auto cruise.

The project was built with complete project
management and documentations adhering to
DoD standards, MIL-STD-498[15]. The software
project was built based on the UML specification
and design standards [16] with a software written
in C++.

5.1 Results

We identified from the OBA project, 46
requirements, 34 test cases, 12 packages, 23
classes and 80 methods. Our system, Catia
assumes that a change request has already been
translated and expressed in terms of the
acceptable artifacts i.e. requirements, classes,
methods or test cases. Catia was designed to
manage the potential effect of one type of
artifacts at a time.

The system works such that given an artifact as a
primary impact, Catia can determine its effects
on other artifacts (secondary artifacts) in either

Figure 5 : First user interface of CATIA

 8

top-down or bottom-up tracing. Figure 5 shows
an initial user entry into the Catia system by
selecting a type of primary artifacts followed by
the detailed artifacts. The user had selected

methods as the primary arti
mtd2, mtd12 and mtd15 as th
of interest.

Figure 6 represents an outp
artifacts and its summary aft
one or more types of seco
Figure 6, the user selected al
as the secondary artifacts
impacts. After ‘generate b
produced a list of impacted
packages, test cases and req
primary artifact chosen earlie
table (Figure 6), all the
associated to mtd2, mtd12
shown in terms of counts, LO
an example of mtd2, this requ
potential effect to 4 methods i
brought to the total metrics
VG (47).

In terms of the classes, mtd2 had caused 3
classes with their LOC (190) and VG (71). In
packages, mtd2 had caused 2 packages of size
LOC (279) and VG (100). Mtd2 involved in 4

Figure 6 : Output of requirements traceability

fact and chose the
e detailed methods

ut of the impacted
er the user selected
ndary artifacts. In
l the artifact levels

to visualize the
utton’, Catia then
 methods, classes,
uirements for each
r. In the summary
impacted artifacts

 and mtd15 were
C and VG. Taking
irement had caused
n the system which
of LOC (117) and

test cases that took up the total metrics of LOC
(373) and VG (123) of impacted methods to
implement it. Please note that total LOC and VG
for both test cases and requirements are the same
as the requirements are characterized and
executed by the test cases. Catia also provides a
list of the detailed artifacts with their metric
values to allow users to identify the impacted
components.

5.2 Some Discussions and Lessons Learnt

There are some points we would like to highlight
with respect to the implementation of our
prototype.

1. DLL files (4 packages)

DLL files only contain all the executable
files as the reusable software packages and
no source code available. As this is the case,
there is no way for us to neither using the

9

McCabe nor CodeMentor to capture the
methods and classes within the DLL
packages. Thus, we treated the DLL files as
special packages with no metric values.

2. Self impact
There were cases in the (MxM) and (CxC)
relationships, a component only made an
impact on itself not to others. This is due to
the fact that a method or class was designed
just to provide a service rather than call
invocation to others.

3. Non functional requirements (1 requirement)
There was a timing requirement, STD_REQ-
02-19 stated that ”fuel inlet mechanism
should respond in less than 0.5 seconds on
actions by a driver”. This requirement had
no impact on other classes or methods. This
is due to the fact that the timer is produced
by the kernel operating system not by any
other classes or methods. The result of
timing may be needed by some classes or
methods for some tasks e.g. in speed
calculation, but no action being carried out
by any methods or classes to check the
violation of timing. The developers verified
this requirement manually by running a test
driver to spy the timing at the background
mode. As no program verification can be
made on this particular issue, we dropped
this type of requirement from our work.

6. Related Work
We need to make clear that a software
traceability and change impact are two different
issues in literature and research undertaking,
although both are related to one another. In
change impact analysis, efforts and tools are
more focused on code rather than software
system. These include OOTME [17], CHAT [18]
and OMEGA [19]. OOTME (Object-Oriented
Test Model Environment) provides a graphical
representation of object oriented system that
supports program relationships such as
inheritance, control structures, uses, aggregation
and object state behavior. OOTME is suitable to
support regression testing across functions and
objects.

CHAT (Change Impact Analysis Tool), an
algorithmic approach to measure the ripple-
effects of proposed changes is based on object
oriented data dependence graph that integrates
both intra-methods and inter-methods. OMEGA,
an integrated environment tool for C++ program
maintenance was developed to handle the

message passing, class and declaration
dependencies in a model called C++DG. The use
of program slicing leads to recursive analysis of
the ripple effects caused by code modification.
McCabe [7] supports impacts at testing scenarios
using call graphs of method-calls-method
relationships, while, Code Surfer [8] provides an
impressive impact analysis at the code level
based on static analysis. The latter also allows a
user to manipulate artifacts at any statements.

As the above mentioned approaches and tools are
only limited to code model, we are not able to
appreciate the real change impact as viewed from
the system perspective. To manage a change
impact analysis at a broader perspective, we have
to associate them with traceability approach that
requires a rich set of coarse and fine grained
granularity relationships within and across
different level of software models. Sneed’s work
[20] relates to a traceability approach by
constructing a repository to handle maintenance
tasks that links the code to testing and concept
models. His concept model seems to be too
generalized that includes the requirements,
business rules, reports, use cases, service
functions and data objects. He developed a
model and a tool called GEOS to integrate all
three software entities. The tool is used to select
the impacted entities and pick up their sizes and
complexities for effort estimation.

Bianchi et al. [21] introduce a traceability model
to support impact analysis in object-oriented
environment. However, both [20,21] do not
involve a direct link between requirements and
test cases to the code. Yet their works consider
classes as the smallest artifacts of software
components. Lindvall and Sandahl [12] present a
traceability approach based on domain
knowledge to collect and analyze software
change metrics related to impact analysis for
resource estimates. However, their works do not
consider automated concept location. They
relate some change requests to the impacted code
in terms of classes but no requirements and test
cases involved.

Our work differs from the above in that we
attempt to integrate the software components that
include the requirements, test cases, design and
code. Our model and approach allow a
component at one level to directly link to other
components of any levels. Another significant
achievement can be seen in its ability to support
top down and bottom up tracing from a

 10

component perspective. This allows a maintainer
to identify all the potential effects before a
decision can be made. Our traceability
integration manages to link the high level
software components down to the
implementation code with methods being
considered as our smallest artifacts. This allows
potential effects to become more focused.

6. Conclusion and Future Work
We apply the combination of both dynamic and
static analysis techniques to integrate
requirements to the low level components.
Dynamic analysis is used to link the
requirements and test cases to the
implementation code, while static analysis is
used to establish relationships between
components within the code and design models.
Our approach of traceability and impact analysis
contributes some knowledge to the integration of
both top-down and bottom-up impacts of system
artifacts. This strategy allows provision for
efficiency as the impacted artifacts can be
directly accessed from an artifact perspective.

It seems that our approach would be more
impressive if we could extend our traceability
approach to include the detailed statements such
as variables as our smallest artifacts. However,
we have to bear in mind that considering those
options would create large relationships among
the software artifacts that may degrade the
system performance. In large system, the
maintainers are normally interested to know
which classes or methods that need to be
modified rather than the detailed statements of
the code [12]. They would then intuitively
recognize those detailed parts as they explore
further.

Currently our prototype provides traceability
infrastructures with some measurements to
support change impact. It can be enhanced
further to support GUI linked to program views
for better user interface of which we reserve for
future work.

Acknowledgements
This research is funded by the IRPA of
Malaysian Plan (RM-8) under vot no. 74075.
The authors would like to thank the Universiti
Teknologi Malaysia, the University of Durham,
the Universiti Kebangsaan Malaysia and
individuals for their involvement and invaluable

comments and suggestions throughout the
development and review process.

References

[1] Bohner S.A., Arnold R.S., 1996. An

Introduction to Software Change Impact
Analysis, IEEE CS Press, Los Alamitos,
CA, pp.1-26, 1996.

[2] B. Ramesh, 1997. Requirements
traceability: Theory and Practice, Annuals
of Software Engineering, vol. 3, pp. 397-
415.

[3] R.J. Turver, M. Munro, 1994. An Early
impact analysis technique for software
maintenance, Journal of Software
Maintenance: Research and Practice, Vol.
6 (1), pp. 35-52.

[4] Bohner S.A., Arnold R.S., 1991. Software
Change Impact Analysis for Design
Evolution, 8th International Conference on
Software Maintenance and Reengineering,
IEEE CS Press, Los Alamitos, CA, pp.
292-301.

[5] Gotel O., Finkelstein A., 1994. An
Analysis of the Requirements Traceability
Problem, in Proceedings of the First
International Conference on Requirements
Engineering, Colorado, pp. 94-101.

[6] Ibrahim S., Idris N.B., Deraman A., 2003.
Case study: Reconnaissance techniques to
support feature location using RECON2,
Asia-Pacific Software Engineering
Conference, IEEE, pp. 371-378.

[7] http://www.mccabe.com
[8] http://www.gramatech.com/products/

 codesurfer/index.html
[9] Ibrahim S., Mohamad R.N., 2004. Code

Parser for C++, Technical report of
Software Engineering, CASE/August
2004/LT2.

[10] S. Horwitz, T. Reps, and D. Binkley,
1990. Interprocedural slicing using
dependence graphs, ACM Transactions on
Progrramming Languages and Systems,
12(1), pp. 26-60.

[11] Booch G., Jacobson I., Rumbaugh J.,
UML Distilled Applying the Standard
Object Modeling Language, Addison-
Wesley, 1997.

[12] M. Lindvall and K. Sandahl, 1998.
Traceability Aspects of Impacts Analysis
in Object-Oriented System, Journal of
Software Maintenance Research And
Practice, vol. 10, pp. 37-57.

 11

http://www.mccabe.com/

[13] Rajlich V., Wilde N. , 2002. The Role of
Concepts in Program Comprehension,
Proceedings of 10th International
Workshop on Program Comprehension,
IEEE, pp. 271-278.

[14] A. Egyed, 2003. A Scenario-Driven
Approach to Trace Dependency Analysis,
IEEE Transactions on Software
Engineering, vol 29(2).

[15] Joint Logistics Commanders on Computer
Resource Management, Overview and
Tailoring Guidebook on MIL-STD-498,
Arlington, 1996.

[17] Kung D., Gao J., Hsia P. and Wen F.,
1994. Change Impact Identification in
object-oriented software maintenance,
Proceedings of International Conference
on Software Maintenance, pp. 202-211.

[18] Lee M., 2000. Algorithmic analysis of the
impacts of changes to object-oriented
software, Proceedings of 34th International
Conference on and Systems, pp. 61-70.

[19] Chen X., Tsai W.T., Huang H., 1996.
Omega – An integrated environment for
C++ program maintenance, IEEE, pp.
114-123.

[20] Sneed H.M., 2001. Impact Analysis of
maintenance tasks for a distributed object-
oriented system, Proceedings of Software
Maintenance, IEEE, pp. 180-189.

[21] Bianchi A. , Fasolino A.R., Visaggio G.,
2000. An Exploratory Case Study of the
Maintenance Effectiveness of Traceability
Models, IWPC, pp. 149-158.

 12

	Relationships

