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Abstract 
 
It is inevitable that a software undergoes some 
change in its lifetime. With some change requests 
comes a need to estimate the scope (e.g. size and 
complexity) of the proposed changes and plan 
for their implementation. Software traceability 
and its subsequent impact analysis help relate 
the consequences or ripple-effects of a proposed 
change across different levels of software 
models. In this paper, we present a software 
traceability approach to support change impact 
analysis of object oriented software. The 
significant contribution in our traceability 
approach can be observed in its ability to 
integrate the high level with the low level 
software models that involve the requirements, 
test cases, design and code. Our approach 
allows a direct link between a component at one 
level to other components of different levels. It 
supports the top down and bottom up traceability 
in response to tracing for the  potential effects.  
We developed a software prototype called Catia 
to support C++ software, applied it to a case 
study of an embedded system  and discuss the  
results. 
 
Keywords: Software traceability, impact 
analysis, change request, concept location  
  
1. Introduction 

 
It is inevitable that a software undergoes some 
change in its lifetime. With some change 
requests comes a need to estimate the scope (e.g. 
size and complexity) of the proposed changes 
and plan for their implementation. The main 

problem to a maintainer is that seemingly small 
changes can ripple throughout the system to 
cause substantial impact elsewhere. A maintainer 
generally accomplishes change by analyzing the 
existing dependencies or relationships among the 
software components composing the software 
system. 
 
Software change impact analysis [1], or impact 
analysis for short, offers considerable leverage in 
understanding and implementing change in the 
system because it provides a detailed 
examination of the consequences of changes in 
software. Impact analysis provides visibility into 
the potential effects of the proposed changes 
before the actual changes are implemented. The 
ability to identify the change impact or potential 
effect will greatly help a maintainer or 
management to determine appropriate actions to 
take with respect to change decision, schedule 
plans, cost and resource estimates.     
 
To implement impact analysis at a broader 
perspective is considerably hard to manage as it 
involves traceability within and across different 
models in the software life-cycle, such as from 
the design model to code model. Ramesh relates 
traceability as the ability to trace the dependent 
items within a model and the ability to trace the 
corresponding items in other models [2]. Such  
kind of traceability is called requirements 
traceability [2]. Pursuant to this, Turner and 
Munro [3] assume that a system traceability 
implies that all models of the software are 
consistently updated.  
 
Research on requirements traceability has been 
widely explored since the last two decades that 
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supports many applications such as 
redocumentation, visualization, reuse, etc. 
Traceability is fundamental to the software 
development and maintenance of large system. It 
shows the ability to trace from high level 
abstracts to low level abstracts e.g. from a 
requirement to its implementation code. The fact 
about this traceability model is that if the 
component relationships are too coarse, they 
must be decomposed to understand complex 
relationships. On the other hand, if they are too 
granular, it is difficult to reconstruct them into 
more recognized, easily understood software 
work products [4]. 
 
We would like to explore a requirements 
traceability for change impact analysis from 
which we should be able to capture the impacts 
of a proposed change. What we mean a proposed 
change is a target component that needs to be 
modified as a result of change request. Change 
request is initiated by the client or internal 
development staff due to the need to make a 
change in the software system. It should be 
translated into some explicit and more 
understandable items before a change impact 
analysis can be implemented. 
 
This paper is organized as follows: Section 2 
presents an overview of our traceability model. 
Section 3 discusses our approach to handle the 
artifacts and change impact analysis followed by 
the traceability techniques. Section 4 discusses 
our total traceability approach. Section 5 presents 
our case study and followed by some results and 
discussions. Section 6 presents some related 
work. Lastly, section 7 gives a conclusion and 
future work. 
 
2. A Traceability Model 

 
Figure 1 reflects the notion of our model to 
establish the relationships between artifacts. The 
thick arrows represent the direct relationships 
while the thin arrows represent the indirect 
relationships. Both direct and indirect 
relationships can be derived from static or 
dynamic analysis of component relationships. 
Direct relationships apply actual values of two 
components, while indirect relationships apply 
intermediate values of relationship e.g. using a 
transitive closure.  

 
Static relationships are software traces between 
components resulting from a study of static 

analysis on the source code and other related 
models.  Dynamic analysis on the other hand, 
results from execution of software to find traces 
such as executing test cases to find the impacted 
codes. We classify our model into two 
categories; vertical and horizontal traceability. 
Vertical traceability refers to the association of 
dependent items within a model and horizontal 
traceability refers to the association of 
corresponding items between different models 
[5]. 

 
Figure 1: Meta-model of traceability system 
 
2.1 Horizontal Traceability  
We regard horizontal traceability as a traceability 
model of inter-artifacts such that each 
component (we call it as an artifact) in one level 
provides links to other components of different 
levels.  Figure 2 shows a traceability from the 
point of view of requirements. For example, R1 
is a requirement that has direct impacts on test 
cases T1 and T2. R1 also has direct impacts on 
the design D1, D2, D3 and on the code 
component C1, C3, C4. Meanwhile T1 has its 
own direct impact on D1 and D1 on C4, C6, etc 
which reflect the indirect impacts to R1. The 
same principle also applies to R2. R1 and R2 
might have an impact on the same artifacts e.g. 
on T2, D3, C4, etc. Thus, the system impact can 
be interpreted as follows. 
S = (G, E) 
G = GR ∪ GD ∪ GC ∪ GT 
E = ER ∪ ED ∪ EC ∪ ET 
Where,  
S - represents a total impact in the system 
G - represents an artifact of type requirements 
(GR), design (GD), code (GC) or test cases (GT). 
E - represents the relationships between artifacts 
from the point of view of an artifact of interest. 
This is identified by ER, ED, EC and ET. 
  
Each level of horizontal relationship can be 
derived in the following perspectives. 
i) Requirement Traceability 
ER ⊆ GR x SGR 

REQUIREMENT

TEST CASES CODE 

DESIGN 
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SGR = GD ∪ GC ∪ GT 
A requirement component relationship (ER) is 
defined as a relationship between requirement 
(GR) with other artifacts (SGR) of different 
levels. 

ii) Design Trace
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Requirement level here refers to the functional 
requirements. While the test case level refers to 
the test descriptions that describes all possible 
situations that need to be tested to fulfill a 

 

Figure 2: Traceability from the requirement perspective
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requirement. In some systems, there might exist 
some requirements or test cases being further 
decomposed into their sub components. 
However, to comply with our model, each is 
uniquely identified.  To illustrate this 
phenomenon, let us consider the following 
example. 
Req#: 5  
Code : SRS_REQ-02-05 
Description: The driver presses an “Activation” 
button to activate the AutoCruise function.  
The test cases involved : 
1) Test case #: 1  
     Code: TCASE-12-01 
     Description : Launch the Auto Cruise with 

speed  > 80 km/hr. 
i) Test case#: 1.1  
Code : TCASE-12-01-01  
Description: Launch the Auto Cruise 
while not on fifth gear.  
ii) Test case#: 1.2 
Code : TCASE-12-01-02 
Description: Launch the Auto Cruise 
while on fifth gear.  

2)  Test case#: 2 
      Code : TCASE-12-02 

Description: Display the LED with a 
warning message “In Danger” while on auto 
cruise if the speed is >= 150 km/h. 

 
We can say that Req#5 requires three test cases 
instead of two as we need to split the group of 
test case#1  into its individual test case#1.1 and 
test case#1.2.   
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In the design and code, again there might exist 
some ambiguities of what artifacts should be 
represented as both may consist of some 
overlapping components e.g. should the classes 
be classified in the design or code ? To us, this is 
just a matter of development choice.    
 
Design level can be classified into high level 
design abstracts (e.g. collaboration design 
models) and low level design abstracts (e.g. class 
diagrams) or a combination of both. In our 
implementation, we pay less attention on high 
level design abstracts to derive a traceability as 
this needs more research and would complicate 
our works.  We apply the low level design 
abstracts that contain the software packages and 
class interactions. While, the code is to include 
all the methods, their contents and interactions.   
 
3. Approach  
3.1 Hypothesize Traces 
We believe that there exists some relationships 
among the software artifacts in a system. We 
need to trace and capture their relationships 
somehow not only within the same level but also 
across different levels of artifacts before a impact 
analysis can be implemented. The process of 
tracing and capturing these artifacts is called 
hypothesizing traces.  
 
Hypothesized traces can often be elicited from 
system documentation or corresponding models. 
It is not important in our approach whether the 
hypotheses should be performed by manually 
through the available documentations and 
software models or by automatically with the 
help of a tool. Figure 3 reflects one way of 
hypothesizing traces. It can be explained in the 
following steps.  
 
1. For each requirement, identify some selected 

test cases (RxT). 
2. Clarify this knowledge with the available 

documentation, if necessary. 
3. Run a test scenario (dynamic analysis) for 

each test case based on the available test 
descriptions and procedures, and capture the 
potential effects in terms of the methods 
involved (TxM). Methods are the member 
functions in C++. We developed  a tool 
support, called CodeMentor to identify the 
impacted code by instrumenting the source 
code  prior to its execution [6].   

4. Perform a static analysis on the code to 
capture the class-class (CxC), method-class 

(MxC), class-method (CxM) and method-
method (MxM) dependencies.  

 
We experimented using tool supports such as 
McCabe [7] and Code Surfer [8] to help capture 
the above program dependencies. However, 
other manual works as well as the need for other 
types of information saw us developing our own 
code parser called TokenAnalyzer [9].  

3.2 Impact analysis  
Some techniques are available to address impact 
analysis in code such as call graphs, data flows, 
ripple-effects and dependence graphs of program 
slicing [10]. However, the way these techniques 
are used may vary depending on the problem 
being addressed. In our case, we use the ripple-
effects of call graphs and dependence graphs to 
manage impact analysis. We need to analyze 
from the program dependencies which artifacts 
cause effect to which artifacts. For example, in a 
method-to-method relationship of call 
invocations 

M1  M2 
   M4 
M1 calls two other methods; M2 and M4. This 
means any change made to M2 or M4 would 
have a potential effect on M1. So, in our context 
of impact analysis, we have to work on the other 
way around by picking up a callee and finding its 
corresponding callers for its potential effects. In 
other word, a change made to a callee may have 
a potential effect or ripple effect on its callers. 

 
 

Code 

Requirement 

Documentations 

Design 

3. Observe 
traces 

4. Generate 
traces 

5. Satisfy
goal 1. Select 

test cases 

Test Cases 

2. Clarify  
knowledge 

 

4. Generate 
traces 

Figure 3 : Hypothesized and observed traces 
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Table I:  Structural relationships in C++ 
Relationships Definitions Examples 
Call 
(MxM) 

An operation 
(method) of the 
first class calls 
an operation of 
the second one. 
-----Impact ----- 
a1()  b1() 

class B  
{void b1();} 
class A { 
 void a1() { 
   B test; 
    test.b1();} 
   } 

Composition 
(CxC) 

A class contains 
a data member 
of some other 
class type. 
-----Impact ----- 
A  B 
 

class B {}; 
class A 
{ 
  B test; 
} 

Create 
(CxM) 

Some operation 
of the first class 
creates an 
object of the 
second class 
(instantiation) . 
-----Impact ----- 
a1()  B 
 

class B {}; 
class A { 
 void a1()  
  { 
   B t;  
  } 
} 

Friendship 
i) (CxC) 
ii) (MxC) 

Dependency 
from two 
classes. 
-----Impact ----- 
i) A  B 
ii) A  c1()  

class B{}; 
class A { 
  friend class 
B; 
friend int 
C:: c1(); 
} 

Uses  
(CxM) 

 

Data uses 
another data of 
different 
classes. 
-----Impact ----- 
    a1()  B 
    a1()  C 

class B 
{int k;…} 
class C 
{int m;…} 
class A { 
 B b; C c; 
void a1()       
{int m=b.k   
     + c.m; }  
} 

Inheritance 
(CxC) 

Inheritance 
relation among 
classes. 
-----Impact ----- 
A  B 

class B {}; 
class A : 
public B 
{ 
} 

Association 
(CxM) 
 

A class contains 
an operation 
with formal 
parameters that 
have some class 
type. 
-----Impact ----- 
a1()  B 

class B{}; 
class A { 
 void a1 (B* 
par =0); 
} 
 
 
 

Aggregation 
(CxM) 

A class contains 
data members 
of pointer 
(reference) to 
some other 
class. 
-----Impact ----- 
a1()  B 

class B {}; 
class A { 
void a1() 
 { 
  B* test; 
 } 
} 

Define 
i)  (MxC) 
ii) (CxM) 
 

A class contains 
data members 
and member 
functions.  
-----Impact ----- 
  i) A  a1() 
  ii) a1()  A 

Class A  
{ 
Void a1(); 
} 

            
In another example, if class A  is inherited from 
class B, then any change made in class B may 
affect class A and all its lower subclasses, not to 
its upper classes. Table I presents the types of 
relationship, with descriptions and examples of 
all possible dependencies in C++ that can 
contribute to change impact. In call relationship, 
there exists a method-method relationship as the 
called method b1() may affect the calling method 
a1(). In composition relationship, test is a data 
member of class B, would imply a change in B 
may affect class A, in a class-class relationship.  
 
In create relationship, a change made in class B 
would affect the creation of objects in method 
a1(). Thus, we can say that class B may affect 
method a1() in a method-class relationship. In 
friend relationship, two types of friendship can 
occur, namely class friendship and method 
friendship. Class friendship results in a class-
class relationship as it allows other class to 
access its class private attributes. While, method 
friendship results in a method-class relationship 
as it allows a method of other class to access its 
class private attributes.  
 
In use relationship, we consider the use of data 
(i.e. variables or data members in C++) in the 
data assignment. Our objective here is to apply 
the use relationships that provide links between 
components of different methods and classes. In 
Table I, the use relationship involves data from 
other classes to implement a data assignment i.e. 
k and m from class B and C respectively.  So, the 
class B and C would give impact to method a1()  
in a class-method relationship.  
 
In Association relationship, a class contains an 
operation with formal parameters that have some 
class type. A change of class type in B would 
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affect method a1() in method-class relationship. 
In aggregation relationship, a class contains data 
members of pointer (reference) to some other 
class. So, a change in class B may affect class A 
in method-class relationship. Lastly, in define 
relationship observes i) a method-class 
relationship when one or more methods are 
defined in a class, so any change in a method 
simply affects its class ii) a class-method 
relationship when a change in a class implies an 
impact to its methods. 
 
Our code parser, TokenAnalyzer was specially 
designed and developed to capture all these 
dependencies and form the designated tables of 
method-method, method-class, class-method and 
class-class relationships.  
 
From our analysis on program dependencies, we 
can conclude that the artifact relationships and 
type relationships can be classified into several 
categories as appeared in Table II.  Please note 
that for each artifact relationship, the types of 
relationship may appear explicitly and implicitly. 
Explicit relationships (shown in no brackets) 
mean the direct relationships we captured and 
obtained from the hypothesized traces. While, 
implicit relationships (shown in brackets) denote 
the indirect relationships we need to compute 
from the lower level artifact relationships.  
 
Table II: Classifications of artifact and type 
relationships. 
Artifact 
relationships 

Types of 
relationship 

CxC composition, class friendship, 
inheritance, [create, association, 
aggregation, method friendship, 
uses, call, define] 

CxM 
 
MxC 

create, association, aggregation, 
uses, define [call] 
method friendship, define [call] 

MxM Call 
 
The reason behind these indirect relationships is 
if there is an impact to a data would imply an 
impact to its method, and an impact to a method 
would imply an impact to its class it belongs to. 
Thus, there is a need to make them explicitly 
defined  by transforming the lower level matrices 
into the higher level matrices e.g. to transform 
the MxM into MxC, CxM, CxC. With these new 
formations, we need to add into or update the 
existing designated tables we captured earlier. 
This gives us the broader potential effects as we 
move on to higher levels. Our point here is to 

allow users to visualize the impact at any level of 
relationships. The computation on this 
transformation is discussed in section 4.1. 
 
3.3 Traceability Techniques 
Intrinsically, traceability provides a platform for 
impact analysis. We can classify three techniques 
of traceability.  

1. Traceability via explicit links 
Explicit links provide a technical means 
of explicit traceability e.g. traceability 
associated with the basic inter-class 
relationships in a class diagram 
modeled using UML [11]. 

2. Traceability via name tracing 
Name tracing assumes a consistent 
naming strategy and is used when 
building models. It is performed by 
searching items with names similar to 
the ones in the starting model [12]. 

3. Traceability via domain knowledge and 
concept location. 
Domain knowledge and concept 
location are normally used by 
experienced software developer tracing 
concepts using his knowledge about 
how different items are interrelated 
[13].  

 
We apply 1) and 3) in our traceability approach. 
We obtain the explicit links of artifacts including 
the transformation matrices. We use concept 
location to establish links between requirements 
and test cases with the implementation code.  
 
This process requires a maintainer to understand 
the domain knowledge of the system he wants to 
modify. With this prior knowledge of a 
requirement, a maintainer should be able to 
decompose it into more explicit items in terms of 
classes, methods or variables. These explicit 
items represent a requirement or a concept that 
are more traceable in the code [13]. With the 
help of test cases in hand, our approach via 
codeMentor should be able to support a 
maintainer tracing and locating the ripple-effects 
of the defined items in terms of the impacted 
methods and classes. 
 
Name tracing is another technique for 
implementing traceability. It can be used to 
locate the corresponding items of a model with 
another model e.g. to locate the occurrences of 
an item of similar name as appeared in a 
requirement with the ones that exist in the 
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implementation code in an effort to establish 
some links between requirements and code. 
However, this strategy is not practical in our 
context of study. The reason is that name tracing 
cannot be used to search for structural 
relationships of program dependencies.     
 

4. Total Traceability Approach 
 
Figure 4 describes the implementation of our 
total traceability approach. The horizontal 
relationships can occur at the cross boundaries as 
shown by the thin solid arrows e.g. the 
requirements-test (RxT), test case-code (TxM), 
and so forth. The vertical relationships can occur 
at the code level (MxM - method interactions) 
and design level (CxC - class interactions, PxP - 
package interactions) respectively.  

 
 
As
hy
Rx
(R
suc
im
com
 
Th
tra
int
bas
on
or 
the
eith
do

traceability from the higher level artifacts down 
to its lower levels e.g. from a test case we can 
identify its associated implementation code.  
 
For bottom-up tracing, it allows us to identify the 
impacted artifacts from a lower to a higher level 
of artifacts e.g. from a method we can identify its 
impacted test cases and requirements. As the 
system goes along the way tracing for potential 
effects of either top-down or bottom-up 
traceability, it collects and sums up the size of 
metrics of the impacted artifacts. The metric 
sizes are measured  in terms of the LOC (lines of 
code) and VG (value of program complexity). 
We need to assign each method and class with 
LOC and VG before hand with the help of a code 
parser, e.g. using McCabe tool.  
 
4.1 Computing Matrices 

 
Some matrix tables were made available from 
our previous hypothesized traces. In each table 
of binary relationships, the row parts represent 
the artifacts of interest while the column parts 
are the potential effects. For example, in MxM 
each method (in rows) produces some potential 
effects on some other methods (in columns). 
These potential effects are called footprints [14].  
We apply a mapping table to create or transform 
a lower level artifact relationship into its higher 
level. 
  
For example, to create a CxM table we first look 
into the existing MxM matrix that for each 
column, we use the mapping table to upgrade the 
rowed methods into the rowed classes. This 
means, the method footprints are automatically 

Requirements 

s

Test cases 

(RxT) 

(TxM) (MxC) 

(RxC) 

Design 
(CxC),(PxP)

Top 
Down Bottom 

Up 
(R 
x
M) 

(TxC),(TxP) 

Code 
(MxM) 

 

Figure 4 : System artifacts and their link
 we had the RxT and TxM from the 
pothesized traces earlier, we can compute the 
M using a transitive closure,  
xT) and (TxM)  (RxM) 
h that if R impacts T and T impacts M, then R 

pacts M. The rest of the matrices can be 
puted or created as discussed in Section 4.1.  

e method interactions can simply be 
nsformed into class interactions and package 
eractions by the use of mapping mechanism 
ed on the fact that a package is made up of 

e or more classes and a class is made up of one 
more methods. The thick doted lines represent 
 total traceability we need to implement in 
er top down or bottom up tracing. By top-

wn tracing, we mean we can identify the 

upgraded into the class footprints. If no method 
footprints exist during this transformation, means 
no corresponding class footprints take place. 
Similarly, we can establish the MxC 
relationships such that for each row of MxM, we 
upgrade the columned methods into the 
columned classes carrying the method footprints 
along to become the class footprints.  
 
To create the CxC relationships, we can work on 
the basis of either CxM or MxC. Taking the 
CxM as an example, for each rowed class of 
CxM we upgrade the columned methods into the 
columned classes carrying the columned method 
footprints along to become the columned class 
footprints. On MxC, we can upgrade the rowed 
methods of MxC into the rowed classes carrying 
the rowed method footprints along to become the 
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rowed class footprints. We can apply the same 
concept to create other matrices such as CxP, 
PxC and PxP.  
 
It is interesting to note that in our context of 
study, MxC is not the same as CxM. The reason 
is that the MxC is to see the potential effect of a 
method over other parts of the code in terms of 
classes. Whereas, the CxM is to see the potential 
effect of a class over other parts of the code in 
terms of methods. This is the reason why we 
cannot apply a transitive closure to some 
matrices.  Similarly, We use the underlying RxM 
to transform it into RxC and RxP by upgrading 
the methods into classes and classes into 
packages. The same principle applies to TxM to 
transform it into TxC and TxP.  
 
5. Case Study 

 
To implement our model, we applied it to a case 
study of software project, called the Automobile 
Board Auto Cruise (OBA).  OBA is an 
embedded software system of 4k LOC with 480 
pages of documentation developed by the M.Sc 
group-based students  of computer science at the 
Centre For Advanced Software Engineering, 
university of Technology Malaysia. OBA was 

built as an interface to allow a driver to interact 
with his car while on auto cruise mode such as 
accelerating speed, suspending speed, resuming 
speed, braking a car, mileage maintenance, and 
changing modes between the auto cruise and 
non-auto cruise.  

The project was built with complete project 
management and documentations adhering to 
DoD standards, MIL-STD-498[15]. The software 
project was built based on the UML specification 
and design standards [16] with a software written 
in C++.  
 
5.1 Results 
 
We identified from the OBA project, 46 
requirements, 34 test cases, 12 packages, 23 
classes and 80 methods.  Our system, Catia 
assumes that a change request has already been 
translated and expressed in terms of the 
acceptable artifacts i.e. requirements, classes, 
methods or test cases. Catia was designed to 
manage the potential effect of one type of 
artifacts at a time.  

 
The system works such that given an artifact as a 
primary impact, Catia can determine its effects 
on other artifacts (secondary artifacts) in either 

Figure 5 : First user interface of CATIA 
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top-down or bottom-up tracing.   Figure 5 shows 
an initial user entry into the Catia system by 
selecting a type of primary artifacts followed by 
the detailed artifacts.  The user had selected 

methods as the primary arti
mtd2, mtd12 and mtd15 as th
of interest.  

 
Figure 6 represents an outp
artifacts and its summary aft
one or more types of seco
Figure 6, the user selected al
as the secondary artifacts 
impacts. After ‘generate b
produced a list of impacted
packages, test cases and req
primary artifact chosen earlie
table (Figure 6), all the 
associated to mtd2, mtd12
shown in terms of counts, LO
an example of mtd2, this requ
potential effect to 4 methods i
brought to the total metrics 
VG (47).  
   

In terms of the classes, mtd2 had caused 3 
classes with their LOC (190) and VG (71). In 
packages, mtd2 had  caused 2 packages of size 
LOC (279) and VG (100). Mtd2 involved in 4 

 

Figure 6 : Output of requirements traceability

fact and chose the 
e detailed methods 

ut of the impacted 
er the user selected 
ndary artifacts. In 
l the artifact levels 

to visualize the 
utton’, Catia then 
 methods, classes, 
uirements for each 
r. In the summary 
impacted artifacts  

 and mtd15 were 
C and VG. Taking 
irement had caused 
n the system which 
of LOC (117) and 

test cases that took up the total metrics of LOC 
(373) and VG (123) of impacted methods to 
implement it. Please note that total LOC and VG 
for both test cases and requirements are the same 
as the requirements are characterized and 
executed by the test cases. Catia also provides a 
list of the detailed artifacts with their metric 
values to allow users to identify the impacted 
components. 
 
5.2 Some Discussions and Lessons Learnt 
 
There are some points we would like to highlight 
with respect to the implementation of our 
prototype. 
 
1. DLL files (4 packages) 

DLL files only contain all the executable 
files as the reusable software packages and 
no source code available. As this is the case, 
there is no way for us to neither using the 
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McCabe nor CodeMentor to capture the 
methods and classes within the DLL 
packages. Thus, we treated the DLL files as 
special packages with no metric values.  

2. Self impact  
There were cases in the (MxM) and (CxC) 
relationships, a component only made an 
impact on itself not to others. This is due to 
the fact that a method or  class was designed 
just to provide a service rather than call 
invocation to others.  

3. Non functional requirements (1 requirement) 
There was a timing requirement, STD_REQ-
02-19 stated that ”fuel inlet mechanism 
should respond in less than 0.5 seconds on 
actions by a driver”. This requirement had 
no impact on other classes or methods. This 
is due to the fact that the timer is produced 
by the kernel operating system not by any  
other classes or methods. The result of 
timing may be needed by some classes or 
methods for some tasks e.g. in speed 
calculation, but no action being carried out 
by any methods or classes to check the 
violation of timing. The  developers verified 
this requirement manually  by running a test 
driver to spy the timing  at the background 
mode. As no program verification can be 
made on this particular issue, we dropped 
this type of requirement from our work. 

 
6.  Related Work 
We need to make clear that a software 
traceability and change impact are two different 
issues in literature and research undertaking, 
although both are related to one another. In 
change impact analysis, efforts and tools are 
more focused on code rather than software 
system. These include OOTME [17], CHAT [18] 
and OMEGA [19]. OOTME (Object-Oriented 
Test Model Environment) provides a graphical 
representation of object oriented system that 
supports program relationships such as 
inheritance, control structures, uses, aggregation 
and object state behavior. OOTME is suitable to 
support regression testing across functions and 
objects.  
 
CHAT (Change Impact Analysis Tool), an 
algorithmic approach to measure the ripple-
effects of proposed changes is based on object 
oriented data dependence graph that integrates 
both intra-methods and inter-methods.  OMEGA, 
an integrated environment tool for C++ program 
maintenance was developed to handle the 

message passing, class and declaration 
dependencies in a model called C++DG. The use 
of program slicing leads to recursive analysis of 
the ripple effects caused by code modification. 
McCabe [7] supports impacts at testing scenarios 
using call graphs of method-calls-method 
relationships, while, Code Surfer [8] provides an 
impressive impact analysis at the code level 
based on static analysis. The latter also allows a 
user to manipulate artifacts at any statements.    
 
As the above mentioned approaches and tools are 
only limited to code model, we are not able to 
appreciate the real change impact as viewed from 
the system perspective. To manage a change 
impact analysis at a broader perspective, we have 
to associate them with traceability approach that 
requires a rich set of coarse and fine grained 
granularity relationships within and across 
different level of software models. Sneed’s work 
[20] relates to a traceability approach by 
constructing a repository to handle maintenance 
tasks that links the code to testing and concept 
models. His concept model seems to be too 
generalized that includes the requirements, 
business rules, reports, use cases, service 
functions and data objects. He developed a 
model and a tool called GEOS to integrate all 
three software entities. The tool is used to select 
the impacted entities and pick up their sizes and 
complexities for effort estimation.  
 
Bianchi et al. [21] introduce a traceability model 
to support impact analysis in object-oriented 
environment. However, both [20,21] do not 
involve a direct link between requirements and 
test cases to the code. Yet their works consider 
classes as the smallest artifacts of software 
components. Lindvall and Sandahl [12] present a 
traceability approach based on domain 
knowledge to collect and analyze software 
change metrics related to impact analysis for 
resource estimates. However, their works do not 
consider automated concept location.  They 
relate some change requests to the impacted code 
in terms of classes but no requirements and test 
cases involved.  
 
Our work differs from the above in that we 
attempt to integrate the software components that 
include the requirements, test cases, design and 
code. Our model and approach allow a 
component at one level to directly link to other 
components of any levels. Another significant 
achievement can be seen in its ability to support 
top down and bottom up tracing from a 
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component perspective. This allows a maintainer 
to identify all the potential effects before a 
decision can be made. Our traceability 
integration manages to link the high level 
software components down to the 
implementation code with methods being 
considered as our smallest artifacts. This allows 
potential effects to become more focused. 
 
6.  Conclusion and Future Work 
We apply the combination of both dynamic and 
static analysis techniques to integrate 
requirements to the low level components. 
Dynamic analysis is used to link the 
requirements and test cases to the 
implementation code, while static analysis is 
used to establish relationships between 
components within the code and design models. 
Our approach of traceability and impact analysis 
contributes some knowledge to the integration of 
both top-down and bottom-up impacts of system 
artifacts. This strategy allows provision for 
efficiency as the impacted artifacts can be 
directly accessed from an artifact perspective.  

  
It seems that our approach would be more 
impressive if we could extend our traceability 
approach to include the detailed statements such 
as variables as our smallest artifacts. However, 
we have to bear in mind that considering those 
options would create large relationships among 
the software artifacts that may degrade the 
system performance. In large system, the 
maintainers are normally interested to know 
which classes or methods that need to be 
modified rather than the detailed statements of 
the code [12]. They would then intuitively 
recognize those detailed parts as they explore 
further.    

 
Currently our prototype provides traceability 
infrastructures with some measurements to 
support change impact. It can be enhanced 
further to support GUI linked to program views 
for better user interface of  which we reserve for 
future work. 
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